Skip to main content

Advertisement

Log in

Nutritional Assessment and Body Composition in Critically Ill Children as Prognostic Indicators

  • Pediatrics in South America (L Landry and WB de Carvalho, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of review

Malnutrition is very common in critically ill patients, mainly children and adolescents, and it increases morbidity, length of stay, medical costs, and mortality. Anthropometric and body composition assessment are basic components for monitoring nutritional status. In addition, it appears to be able to predict several clinical outcomes in these patients. This review describes studies evaluating usefulness of nutritional and prognostic assessment tools in critically ill patients.

Recent findings

Although anthropometry is difficult to interpret in critically ill patients, it is very useful for classifying nutrition status, as well as for planning nutritional therapy (NT) and nutrition monitoring. Several traditional nutritional markers (zinc, selenium, prealbumin, and HDL) have been used as inflammatory and, consequently, prognostic indicators. Body composition indicators as phase angle obtained by bioelectrical impedance and arm circumference have shown a strong ability to predict outcomes in a wide variety of clinical situations, including critically ill children and adolescents.

Summary

Early intervention targeting nutrition assessment can prevent or minimize the complications of undernutrition in the intensive care unit. Thus, improving the accuracy of nutritional and prognostic evaluation is of paramount importance in the clinical management of critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Delgado AF, Okay TS, Leone C, Nichols B, Del Negro GM, Vaz FA. Hospital malnutrition and inflammatory response in critically ill children and adolescents admitted to a tertiary intensive care unit. Clinics (Sao Paulo). 2008;63(3):357–62 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664228/. Accessed 5 July 2019.

  2. •• Feferbaum R, Delgado AF, Zamberlan P, Leone C. Challenges of nutritional assessment in pediatric ICU. Curr Opin Clin Nutr Metab Care. 2009;12(3):245–50. https://doi.org/10.1097/MCO.0b013e32832a3f43 This review addresses the use and limitations of anthropometry and laboratorial and body composition markers in the diagnosis of the nutritional status of such patients.

    Article  PubMed  Google Scholar 

  3. Landi F, Camprubi-Robles M, Bear DE, Cederholm T, Malafarina V, Welch AA, et al. Muscle loss: the new malnutrition challenge in clinical practice. Clin Nutr. 2018. https://doi.org/10.1016/j.clnu.2018.11.021.

  4. Zamberlan P, Leone C, Tannuri U, Carvalho WB, Delgado AF. Nutritional risk and anthropometric evaluation in pediatric liver transplantation. Clinics (Sao Paulo). 2012;67(12):1387–92 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521800/. Accessed 5 July 2019.

  5. Biolo G. Protein metabolism and requirements. World Rev Nutr Diet. 2013;105:12–20. https://doi.org/10.1159/000341545.

    Article  PubMed  Google Scholar 

  6. •• Bechard LJ, Parrott JS, Mehta NM. Systematic review of the influence of energy and protein intake on protein balance in critically ill children. J Pediatr. 2012;161(2):333–9.e1. https://doi.org/10.1016/j.jpeds.2012.01.046 The authors examine the influence of protein and energy intakes on protein balance in children receiving mechanical ventilation in the pediatric intensive care unit.

    Article  PubMed  Google Scholar 

  7. Martinez EE, Smallwood CD, Bechard LJ, Graham RJ, Mehta NM. Metabolic assessment and individualized nutrition in children dependent on mechanical ventilation at home. J Pediatr. 2015;166(2):350–7. https://doi.org/10.1016/j.jpeds.2014.09.036.

    Article  PubMed  Google Scholar 

  8. • Toptas M, Yalcin M, Akkoc İ, Demir E, Metin C, Savas Y, et al. The relation between sarcopenia and mortality in patients at intensive care unit. Biomed Res Int. 2018;5263208. https://doi.org/10.1155/2018/5263208. The authors aimed to investigate the relation between Psoas muscle area (PMA) and mortality in all age groups in intensive care unit.

  9. Aurangzeb B, Whitten KE, Harrison B, Mitchell M, Kepreotes H, Sidler M, et al. Prevalence of malnutrition and risk of under-nutrition in hospitalized children. Clin Nutr. 2012;31(1):35–40. https://doi.org/10.1016/j.clnu.2011.08.011.

    Article  CAS  PubMed  Google Scholar 

  10. FAO/WHO/UNU. Expert consultation: human energy requirement. Rome: World Health Organization; 2004.

    Google Scholar 

  11. Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39(Suppl 1):5–41.

    PubMed  Google Scholar 

  12. Maynord PO, Harris ZL. Principles of gastrointestinal: physiology, nutrition, and metabolism. In: Shaffner DH, Nichols DG, editors. Rogers’ Textbook of Pediatric Intensive Care. 5th ed. Philadelphia: Wolters Kluwer; 2015. p. 1593–614.

    Google Scholar 

  13. Ellis KJ. Evaluation of body composition in neonates and infants. Semin Fetal Neonatal Med. 2007;12(1):87–91. https://doi.org/10.1016/j.siny.2006.10.011.

    Article  PubMed  Google Scholar 

  14. National Health and Nutrition Examination Survey (NHANES). Anthropometry procedures manual. Atlanta: CDC; 2017.

    Google Scholar 

  15. World Health Organization. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. Geneva: WHO; 1995. (WHO Technical Report Series 854)

    Google Scholar 

  16. Lekkou A, Mouzaki A, Siagris D, Ravani I, Gogos CA. Serum lipid profile, cytokine production, and clinical outcome in patients with severe sepsis. J Crit Care. 2014;29(5):723–7. https://doi.org/10.1016/j.jcrc.2014.04.018.

    Article  CAS  PubMed  Google Scholar 

  17. Bermudes ACG, de Carvalho WB, Zamberlan P, Muramoto G, Maranhão RC, Delgado AF. Changes in lipid metabolism in pediatric patients with severe sepsis and septic shock. Nutrition. 2018;47:104–9. https://doi.org/10.1016/j.nut.2017.09.015.

    Article  CAS  PubMed  Google Scholar 

  18. •• Ferrie S, Allman-Farinelli M. Commonly used “nutrition” indicators do not predict outcome in the critically ill: a systematic review. Nutr Clin Pract. 2013;28(4):463–84. https://doi.org/10.1177/0884533613486297 This systematic review of randomized controlled trials aimed to assess whether commonly used anthropometric, biochemical, and clinical nutrition indicators are predictive of patient outcomes in the critically ill.

    Article  PubMed  Google Scholar 

  19. Wells JCK, Fewtrell MS. Measuring body composition. Arch Dis Child. 2006;91(7):612–7. https://doi.org/10.1136/adc.2005.085522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Andreoli A, Garaci F, Cafarelli FP, Guglielmi G. Body composition in clinical practice. Eur J Radiol. 2016;85(8):1461–8. https://doi.org/10.1016/j.ejrad.2016.02.005 This review is focused on the use of body composition in clinical practice, since monitoring body composition can be very useful for nutritional and medical interventional.

    Article  Google Scholar 

  21. De Onis M, Yip R, Mei Z. The development of MUAC-for-age reference data recommended by a WHO Expert Committee. Bull WHO. 1997;75(1):11–8 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486977/. Accessed 5 July 2019.

  22. Bettler JMA, Roberts KE. Nutrition assessment of the critically ill child. AACN Clin Issues. 2000;11(4):498–506.

    Article  CAS  PubMed  Google Scholar 

  23. Duren DL, Sherwood RJ, Czerwinski SA, Lee M, Choh AC, Siervogel RM, et al. Body composition methods: comparisons and interpretation. J Diabetes Sci Technol. 2008;2(6):1139–46. https://doi.org/10.1177/193229680800200623.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zemel BS, Riley EM, Stallings VA. Evaluation of methodology for nutritional assessment in children: anthropometry, body composition, and energy expenditure. Annu Rev Nutr. 1997;17:211–35. https://doi.org/10.1146/annurev.nutr.17.1.211.

    Article  CAS  PubMed  Google Scholar 

  25. Zamberlan P, Delgado AF, Leone C, Feferbaum R, Okay TS. Nutrition therapy in a pediatric intensive care unit: indications, monitoring, and complications. JPEN J Parenter Enteral Nutr. 2011;35(4):523–9. https://doi.org/10.1002/ncp.10201.

    Article  PubMed  Google Scholar 

  26. Israëls T, Chirambo C, Caron HN, Molyneux EM. Nutritional status at admission of children with cancer in Malawi. Pediatr Blood Cancer. 2008;51(5):626–8. https://doi.org/10.1002/pbc.21697.

    Article  PubMed  Google Scholar 

  27. Kyle UG, Bosaeus I, Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43. https://doi.org/10.1016/j.clnu.2004.06.004.

    Article  Google Scholar 

  28. Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566–72. https://doi.org/10.1097/MCO.0b013e32830b5f23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mialich MS, Martinez EZ, Jordão Junior AA. Application of body mass index adjusted for fat mass (BMIfat) obtained by bioelectrical impedance in adults. Nutr Hosp. 2014;30(2):417–24. https://doi.org/10.3305/nh.2014.30.2.7242.

    Article  PubMed  Google Scholar 

  30. Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: a review. J Med Eng. 2014;2014:381251. https://doi.org/10.1155/2014/38125.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nescolarde L, Lukaski H, De Lorenzo A, de-Mateo-Silleras B, Redondo-Del-Río MP, Camina-Martín MA. Different displacement of bioimpedance vector due to Ag/AgCl electrode effect. Eur J Clin Nutr. 2016;70(12):1401–7. https://doi.org/10.1038/ejcn.2016.121.

    Article  CAS  PubMed  Google Scholar 

  32. Sergi G, De Rui M, Stubbs B, Veronese N, Manzato E. Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons. Aging Clin Exp Res. 2017;29(4):591–7. https://doi.org/10.1007/s40520-016-0622-6.

    Article  Google Scholar 

  33. Deurenberg P, van der Kooy K, Leenen R, Weststrate JA, Seidell JC. Sex and age specific prediction formulas for estimating body composition from bioelectric impedance: a cross-validation study. Int J Obes. 1991;15:17–25.

    CAS  PubMed  Google Scholar 

  34. Deurenberg P, Kusters GSL, Smit HE. Assessment of body composition by bioelectrical impedance in children and young adults is strongly age-dependent. Eur J Clin Nutr. 1990;44:261–8.

    CAS  PubMed  Google Scholar 

  35. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41(4):810–7. https://doi.org/10.1093/ajcn/41.4.810.

    Article  CAS  PubMed  Google Scholar 

  36. Thibault R, Makhlouf AM, Mulliez A, Cristina Gonzalez M, Kekstas G, Kozjek NR, et al. Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study Phase Angle Project. Intensive Care Med. 2016;42(9):1445–53. https://doi.org/10.1007/s00134-016-4468-3.

    Article  PubMed  Google Scholar 

  37. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis—clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31(6):854–61. https://doi.org/10.1016/j.clnu.2012.05.008.

    Article  PubMed  Google Scholar 

  38. Nagano M, Suita S, Yamanouchi T. The validity of bioelectrical impedance phase angle for nutritional assessment in children. J Pediatr Surg. 2000;35(7):1035–9. https://doi.org/10.1053/jpsu.2000.7766.

    Article  CAS  PubMed  Google Scholar 

  39. •• Garlini LM, Alves FD, Ceretta LB, Perry IS, Souza GC, Clausell NO. Phase angle and mortality: a systematic review. Eur J Clin Nutr. 2018. https://doi.org/10.1038/s41430-018-0159-1 This study aimed to evaluate the relationship between phase angle and mortality through a systematic review of the literature. Forty-eight of 455 papers were assessed and an amount of 42 showed a correlation between phase angle and mortality.

  40. Zamberlan P, Feferbaum R, Doria Filho U, Brunow de Carvalho W, Figueiredo Delgado A. Bioelectrical impedance phase angle and morbidity and mortality in critically ill children. Nutr Clin Pract. 2019;34(1):163–71. https://doi.org/10.1002/ncp.10201.

    Article  PubMed  Google Scholar 

  41. Azevedo ZM, Moore DC, de Matos FA, Fonseca VM, Peixoto MV, Gaspar-Elsas MI, et al. Bioelectrical impedance parameters in critically ill children: importance of reactance and resistance. Clin Nutr. 2013;32(5):824–9. https://doi.org/10.1016/j.clnu.2013.01.011.

    Article  PubMed  Google Scholar 

  42. Stapel SN, Looijaard WGPM, Dekker IM, Girbes ARJ, Weijs PJM, Oudemans-van Straaten HM. Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. Eur J Clin Nutr. 2018;72(7):1019–25. https://doi.org/10.1038/s41430-018-0167-1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Díaz-De Los Santos M, Cieza J, Valenzuela R. Correlación entre índices de bioimpedancia elétrica y score Apache II en pacientes con shock séptico. Rev Med Hered. 2011;21:111–7.

    Article  Google Scholar 

  44. Berbigier MC, Pasinato VF, Rubin BA, Moraes RB, Perry ID. Bioelectrical impedance phase angle in septic patients admitted to intensive care units. Rev Bras Ter Intensiva. 2013;25(1):25–31 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031866/. Accessed 5 July 2019.

  45. Da Silva TK, Berbigier MC, Rubin BA, Moraes RB, Souza GC, Perry ID. Phase angle as a prognostic marker in patients with critical illness. Nutr Clin Pract. 2015;30(2):261–5. https://doi.org/10.1177/0884533615572150.

    Article  PubMed  Google Scholar 

  46. Lee Y, Kwon O, Shin CS, Lee SM. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin Nutr Res. 2015;4(1):32–40. https://doi.org/10.7762/cnr.2015.4.1.32.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ong C, Han WM, Wong JJ, Lee JH. Nutrition biomarkers and clinical outcomes in critically ill children: a critical appraisal of the literature. Clin Nutr. 2014;33(2):191–7. https://doi.org/10.1016/j.clnu.2013.12.010.

    Article  CAS  PubMed  Google Scholar 

  48. Bechard LJ, Duggan C, Touger-Decker R, Parrott JS, Rothpletz-Puglia P, Byham-Gray L, et al. Nutritional status based on body mass index is associated with morbidity and mortality in mechanically ventilated critically ill children in the PICU. Crit Care Med. 2016;44(8):1530–7. https://doi.org/10.1097/CCM.0000000000001713.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Grippa RB, Silva PS, Barbosa E, Bresolin NL, Mehta NM, Moreno YM. Nutritional status as a predictor of duration of mechanical ventilation in critically ill children. Nutrition. 2017;33:91–5. https://doi.org/10.1016/j.nut.2016.05.002.

    Article  PubMed  Google Scholar 

  50. Ravasco P, Camilo ME, Gouveia-Oliveira A, Adam S, Brum G. A critical approach to nutritional assessment in critically ill patients. Clin Nutr. 2002;21(1):73–7. https://doi.org/10.1054/clnu.2001.0508.

    Article  CAS  PubMed  Google Scholar 

  51. Leite HP, Rodrigues da Silva AV, de Oliveira Iglesias SB, Koch Nogueira PC. Serum albumin is an independent predictor of clinical outcomes in critically ill children. Pediatr Crit Care Med. 2016;17(2):e50–7. https://doi.org/10.1097/PCC.0000000000000596.

    Article  PubMed  Google Scholar 

  52. Stratton RJ, Elia M. Who benefits from nutritional support: what is the evidence? Eur J Gastroenterol Hepatol. 2007;19(5):353–8. https://doi.org/10.1097/MEG.0b013e32801055c0.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Zamberlan PhD.

Ethics declarations

Conflict of Interest

Patrícia Zamberlan declares that she has no conflict of interest. Werther Brunow de Carvalho declares that he has no conflict of interest. Artur Figueiredo Delgado declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatrics in South America

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamberlan, P., de Carvalho, W.B. & Delgado, A.F. Nutritional Assessment and Body Composition in Critically Ill Children as Prognostic Indicators. Curr Treat Options Peds 5, 301–313 (2019). https://doi.org/10.1007/s40746-019-00169-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-019-00169-0

Keywords

Navigation