Inhibition Effect of Thiourea Derivative for Mild Steel Corrosion in Acid Medium: Experimental and Theoretical Studies

Abstract

The corrosion inhibition efficiency of thiourea derivative 1-[morpholin-4-yl(phenyl)methyl]thiourea (MPMT) for mild steel in 0.5 M HCl was studied at temperatures 303 K, 313 K, 323 K, and 333 K using experimental techniques like potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements and density functional theory technique. The results suggest that thiourea derivative is an excellent corrosion inhibitor for mild steel. The study of inhibition efficiency of the inhibitor at various temperatures revealed that efficiency of the inhibitor increased up to 323 K and at 333 K inhibition efficiency decreased due to desorption of the inhibitor. The inhibitor MPMT shows maximum corrosion inhibition efficiency of 91.08% and 91.2% in 1000 ppm concentration at 323 K according to PDP and EIS measurement, respectively. PDP measurements showed that MPMT acts as a mixed-type inhibitor involving both physisorption and chemisorption. This is also supported by the standard free energy of adsorption values (− 31.14 to − 36.68 kJ mol−1). The adsorption of MPMT on to the MS surface is obeyed by Langmuir adsorption isotherm at all temperatures. The regression values (R2) obtained from the adsorption isotherm plot are near to unity. The surface morphology of the uninhibited and inhibited mild steel samples was analyzed using the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and UV–Visible spectroscopy. The fraction of electron transfer ∆N value obtained from the theoretical study is 0.5417, indicating the higher ability of the inhibitor molecule to donate electrons to the metal surface. The results obtained from quantum chemical analysis well correlated with the experimental studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Lagrenee M, Mernari B, Bouanis M, Traisnel M, Bentiss F (2002) Study of the mechanism and inhibiting the efficiency of 3, 5-bis (4-methylthiophenyl)-4H-1, 2, 4-triazole on mild steel corrosion in acidic media. Corros Sci 44(3):573–588. https://doi.org/10.1016/S0010-938X(01)00075-0

    CAS  Article  Google Scholar 

  2. 2.

    Zhang QB, Hua YX (2009) Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochim Acta 54(6):1881–1887. https://doi.org/10.1016/j.electacta.2008.10.025

    CAS  Article  Google Scholar 

  3. 3.

    Li W, He Q, Pei C, Hou B (2007) Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media. Electrochim Acta 52(22):6386–6394. https://doi.org/10.1016/j.electacta.2007.04.077

    CAS  Article  Google Scholar 

  4. 4.

    Solmaz R, Kardas GÜ, Yazici Bİ, Erbil ME (2005) Inhibition effect of rhodamine for corrosion of mild steel in hydrochloric acid solution. Prot Met 41(6):581–585. https://doi.org/10.1007/s11124-005-0083-3

    CAS  Article  Google Scholar 

  5. 5.

    Kardas GÜ (2005) The inhibition effect of 2-thiobarbituric acid on the corrosion performance of mild steel in HCl solutions. J Mater Sci 41(3):337–343. https://doi.org/10.1007/s11003-005-0170-2

    CAS  Article  Google Scholar 

  6. 6.

    Amin MA, Khaled KF, Mohsen Q, Arida HA (2010) A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros Sci 52(5):1684–1695. https://doi.org/10.1016/j.corsci.2010.01.019

    CAS  Article  Google Scholar 

  7. 7.

    Döner A, Solmaz R, Özcan M, Kardaş G (2011) Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution. Corros Sci 53(9):2902–2913. https://doi.org/10.1016/j.corsci.2011.05.027

    CAS  Article  Google Scholar 

  8. 8.

    Quraishi MA, Rawat J (2002) Inhibition of mild steel corrosion by some macrocyclic compounds in hot and concentrated hydrochloric acid. Mater Chem Phys 73(2–3):118–122. https://doi.org/10.1016/S0254-0584(01)00374-1

    CAS  Article  Google Scholar 

  9. 9.

    Nasser AJ, Sathiq MA (2010) Adsorption and corrosion inhibition of mild steel in hydrochloric acid medium by N-[morpholin-4-yl (phenyl) methyl] benzamide. Int J Eng Sci Technol 2(11):6417–6426

    Google Scholar 

  10. 10.

    Ahmed SK, Ali WB, Khadom AA (2019) Synthesis and investigations of heterocyclic compounds as corrosion inhibitors for mild steel in hydrochloric acid. Int J Ind Chem 10(2):159–173. https://doi.org/10.1007/s40090-019-0181-8

    CAS  Article  Google Scholar 

  11. 11.

    Caliskan N, Akbas E (2012) Corrosion inhibition of austenitic stainless steel by some pyrimidine compounds in hydrochloric acid. Mater Corros 63(3):231–327. https://doi.org/10.1002/maco.201005788

    CAS  Article  Google Scholar 

  12. 12.

    Ahamad I, Prasad R, Quraishi MA (2010) Experimental and theoretical investigations of adsorption of fexofenadine at mild steel/hydrochloric acid interface as corrosion inhibitor. J Solid State Electrochem 14(11):2095–2105. https://doi.org/10.1007/s10008-010-1041-9

    CAS  Article  Google Scholar 

  13. 13.

    Gece G (2011) Drugs: a review of promising novel corrosion inhibitors. Corros Sci 53(12):3873–3898. https://doi.org/10.1016/j.corsci.2011.08.006

    CAS  Article  Google Scholar 

  14. 14.

    Twite RL, Bierwagen GP (1998) Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog Org Coat 33(2):91–100. https://doi.org/10.1016/S0300-9440(98)00015-0

    CAS  Article  Google Scholar 

  15. 15.

    Tamilvendan D, Rajeswari S, Ilavenil S, Chakkaravarthy K, Prabhu GV (2012) Syntheses, spectral, crystallographic, antimicrobial, and antioxidant studies of few Mannich bases. Med Chem Res 21(12):4129–4138. https://doi.org/10.1007/s00044-011-9944-2

    CAS  Article  Google Scholar 

  16. 16.

    McCafferty E (2010) Corrosion inhibitors. In: Introduction to corrosion science. Springer, New York, pp 357–402. https://doi.org/10.1007/978-1-4419-0455-3_12

  17. 17.

    Vishnuvardhanaraj G, Tamilvendan D, Amaladasan M (2013) A study of synthesized Mannich base inhibition on mild steel corrosion in acid medium. Der Chem Sin 4(3):52–57

    Google Scholar 

  18. 18.

    Thiraviyam P, Kannan K (2012) A study of synthesized Mannich base inhibition on mild steel corrosion in acid medium. J Iran Chem Soc 9(6):911–921. https://doi.org/10.1007/s13738-012-0108-1

    CAS  Article  Google Scholar 

  19. 19.

    Jeeva M, Prabhu GV, Boobalan MS, Rajesh CM (2015) Interactions and inhibition effect of urea-derived Mannich bases on a mild steel surface in HCl. J Phys Chem C 119(38):22025–22043. https://doi.org/10.1021/acs.jpcc.5b05788

    CAS  Article  Google Scholar 

  20. 20.

    Lavanya DK, Frank VP, Vijaya DP (2020) Corrosion inhibitive effect of novel eco-friendly corrosion inhibitors for mild steel in 0.5 M HCl—a comparative study. Surf Eng Appl Electrochem 56(4):524–532. https://doi.org/10.3103/S1068375520040080

    Article  Google Scholar 

  21. 21.

    Lavanya DK, Priya FV, Vijaya DP (2020) Green approach to corrosion inhibition of mild steel in hydrochloric acid by 1-[morpholin-4-yl (thiophen-2-yl) methyl] thiourea. J Fail Anal Prev 20:494–502. https://doi.org/10.1007/s11668-020-00850-9

    Article  Google Scholar 

  22. 22.

    Jeeva M, Boobalan MS, Prabhu GV (2018) Adsorption and anticorrosion behavior of 1-((pyridin-2-ylamino)(pyridin-4-yl) methyl) pyrrolidine-2, 5-dione on mild steel surface in hydrochloric acid solution. Res Chem Intermed 44(1):425–454. https://doi.org/10.1007/s11164-017-3112-3

    CAS  Article  Google Scholar 

  23. 23.

    Ashassi-Sorkhabi H, Shaabani B, Seifzadeh D (2005) Corrosion inhibition of mild steel by some Schiff base compounds in hydrochloric acid. Appl Surf Sci 239(2):154–164. https://doi.org/10.1016/j.apsusc.2004.05.143

    CAS  Article  Google Scholar 

  24. 24.

    Ansari KR, Singh SA, Quraishi MA (2015) Some pyrimidine derivatives as corrosion inhibitor for mild steel in hydrochloric acid. J Dispers Sci Technol 36(7):908–917. https://doi.org/10.1080/01932691.2014.938349

    CAS  Article  Google Scholar 

  25. 25.

    Ansari KR, Quraishi MA, Singh A (2017) Chromenopyridin derivatives as environmentally benign corrosion inhibitors for N80 steel in 15% HCl. J Assoc Arab Univ Basic Appl Sci 22(1):45–54. https://doi.org/10.1016/j.jaubas.2015.11.003

    Article  Google Scholar 

  26. 26.

    Aljourani J, Raeissi K, Golozar MA (2009) Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. Corros Sci 51(8):1836–1843. https://doi.org/10.1016/j.corsci.2009.05.011

    CAS  Article  Google Scholar 

  27. 27.

    Bayol E, Kayakırılmaz K, Erbil M (2007) The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel. Mater Chem Phys 104(1):74–82. https://doi.org/10.1016/j.matchemphys.2007.02.073

    CAS  Article  Google Scholar 

  28. 28.

    Sharma M, Saleem M, Pathania MS, Sheikh HN, Kalsotra BL (2009) Peroxo complexes of molybdenum(VI) containing Mannich base ligands. Chin J Chem 27(2):311–316. https://doi.org/10.1002/cjoc.200990050

    CAS  Article  Google Scholar 

  29. 29.

    Hosseini MG, Khalilpur H, Ershad S, Saghatforoush L (2010) Protection of mild steel corrosion with new thia-derivative Salens in 0.5 M H2SO4 solution. J Appl Electrochem 40(2):215–223. https://doi.org/10.1007/s10800-009-0008-y

    CAS  Article  Google Scholar 

  30. 30.

    Quy Huong D, Duong T, Nam PC (2019) Effect of the structure and temperature on corrosion inhibition of thiourea derivatives in 1.0 M HCl Solution. ACS Omega 4(11):14478–14489. https://doi.org/10.1021/acsomega.9b01599

    CAS  Article  Google Scholar 

  31. 31.

    Chaouiki A, Lgaz H, Zehra S, Salghi R, Chung IM, El Aoufir Y, Bhat KS, Ali IH, Gaonkar SL, Khan MI, Oudda H (2019) Exploring deep insights into the interaction mechanism of a quinazoline derivative with mild steel in HCl: electrochemical, DFT, and molecular dynamic simulation studies. J Adhes Sci Technol 33(9):921–944. https://doi.org/10.1080/01694243.2018.1554764

    CAS  Article  Google Scholar 

  32. 32.

    Kagatikar S, Sunil D, Kumari P, Shetty P (2020) Investigation of anticorrosive property of carbazolecarbaldehyde azine on mild steel using electrochemical, morphological and theoretical studies. J Bio Tribo Corros 6(4):1–17. https://doi.org/10.1007/s40735-020-00433-z

    Article  Google Scholar 

  33. 33.

    Kumari PP, Shetty P, Rao SA, Sunil D, Vishwanath T (2020) Synthesis, characterization and anticorrosion behaviour of a novel hydrazide derivative on mild steel in hydrochloric acid medium. Bull Mater Sci 43(1):1–14. https://doi.org/10.1007/s12034-019-1995-x

    CAS  Article  Google Scholar 

  34. 34.

    El Faydy M, Lakhrissi B, Jama C, Zarrouk A, Olasunkanmi LO, Ebenso EE, Bentiss F (2020) Electrochemical, surface and computational studies on the inhibition performance of some newly synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety against the corrosion of carbon steel in phosphoric acid environment. J Mater Res Technol 9(1):727–748. https://doi.org/10.1016/j.jmrt.2019.11.014

    CAS  Article  Google Scholar 

  35. 35.

    Gholami M, Danaee I, Maddahy MH, RashvandAvei M (2013) Correlated ab initio and electroanalytical study on inhibition behavior of 2-mercaptobenzothiazole and its thiole–thione tautomerism effect for the corrosion of steel (API 5L X52) in sulphuric acid solution. Ind Eng Chem Res 52(42):14875–14889

    CAS  Article  Google Scholar 

  36. 36.

    Boudjellal F, Ouici HB, Guendouzi A, Benali O, Sehmi A (2020) Experimental and theoretical approach to the corrosion inhibition of mild steel in acid medium by a newly synthesized pyrazole carbothioamide heterocycle. J Mol Struct 1199:127051. https://doi.org/10.1016/j.molstruc.2019.127051

    CAS  Article  Google Scholar 

  37. 37.

    Lgaz H, Bhat KS, Salghi R, Jodeh S, Algarra M, Hammouti B, Ali IH, Essamri A (2017) Insights into corrosion inhibition behavior of three chalcone derivatives for mild steel in hydrochloric acid solution. J Mol Liq 238:71–83. https://doi.org/10.1016/j.molliq.2017.04.124

    CAS  Article  Google Scholar 

  38. 38.

    Yadav M, Kumar S, Bahadur I, Ramjugernath D (2014) Corrosion inhibitive effect of synthesized thiourea derivatives on mild steel in a 15% HCl solution. Int J Electrochem Sci 9:6529–6550

    Google Scholar 

  39. 39.

    Fekry AM (2009) The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti–6Al–4V alloy in oxalic acid. Electrochim Acta 54(12):3480–3489. https://doi.org/10.1016/j.electacta.2008.12.060

    CAS  Article  Google Scholar 

  40. 40.

    Rouifi Z, Rbaa M, Abousalem AS, Benhiba F, Laabaissi T, Oudda H, Lakhrissi B, Guenbour A, Warad I, Zarrouk A (2020) Synthesis, characterization and corrosion inhibition potential of newly benzimidazole derivatives: combining theoretical and experimental study. Surf Interfaces 18:100442. https://doi.org/10.1016/j.surfin.2020.100442

    CAS  Article  Google Scholar 

  41. 41.

    Bangera S, Alva VD (2020) Aqueous extract of Macaranga peltata leaves—green corrosion inhibitor for mild steel in hydrochloric acid medium. Surf Eng Appl Electrochem 56:259–266. https://doi.org/10.3103/S1068375520020040

    Article  Google Scholar 

  42. 42.

    Haque J, Srivastava V, Verma C, Quraishi MA (2017) Experimental and quantum chemical analysis of 2-amino-3-((4-((S)-2-amino-2-carboxyethyl)-1H-imidazol-2-yl) thio) propionic acid as new and green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. J Mol Liq 225:848–855. https://doi.org/10.1016/j.molliq.2016.11.011

    CAS  Article  Google Scholar 

  43. 43.

    Hegazy MA, Abdallah M, Awad MK, Rezk M (2014) Three novel di-quaternary ammonium salts as corrosion inhibitors for API X65 steel pipeline in acidic solution. Part I: experimental results. Corros Sci 81:54–64. https://doi.org/10.1016/j.corsci.2013.12.010

    CAS  Article  Google Scholar 

  44. 44.

    Fu J, Pan J, Liu Z, Li S, Wang Y (2011) Corrosion inhibition of mild steel by benzopyranone derivative in 1.0 M HCl solutions. Int J Electrochem Sci 6:2072–2089

    CAS  Google Scholar 

  45. 45.

    Raviprabha K, Bhat RS (2019) Inhibition effects of ethyl-2-amino-4-methyl-1, 3-thiazole-5-carboxylate on the corrosion of AA6061 alloy in hydrochloric acid media. J Fail Anal Prev 19(5):1464–1474. https://doi.org/10.1007/s11668-019-00744-5

    Article  Google Scholar 

  46. 46.

    Neriyana PS, Alva VD (2020) A green approach: evaluation of Combretum indicum (CI) leaf extract as an eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Chem Afr. https://doi.org/10.1007/s42250-020-00190-z

    Article  Google Scholar 

  47. 47.

    Verma C, Quraishi MA, Singh A (2016) 5-Substituted 1H-tetrazoles as effective corrosion inhibitors for mild steel in 1 M hydrochloric acid. J Taibah Univ Sci 10(5):718–733. https://doi.org/10.1016/j.jtusci.2015.10.005

    Article  Google Scholar 

  48. 48.

    Bhat JI, Alva VD (2012) Miconazole nitrate as a potential corrosion inhibitor for aluminium in hydrochloric acid medium. Synth React Inorg Met Org Nano Met 42(7):951–957. https://doi.org/10.1080/15533174.2011.652271

    CAS  Article  Google Scholar 

  49. 49.

    Idouhli R, Koumya Y, Khadiri M, Aityoub A, Abouelfida A, Benyaich A (2019) Inhibitory effect of Senecio anteuphorbium as green corrosion inhibitor for S300 steel. Int J Ind Chem 10(2):133–143. https://doi.org/10.1007/s40090-019-0179-2

    CAS  Article  Google Scholar 

  50. 50.

    Ameer MA, Khamis E, Al-Senani G (2002) Effect of temperature on stability of adsorbed inhibitors on steel in phosphoric acid solution. J Appl Electrochem 32(2):149–156. https://doi.org/10.1023/A:1014777726624

    CAS  Article  Google Scholar 

  51. 51.

    Wang X, Yang H, Wang F (2011) An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corros Sci 53(1):113–121. https://doi.org/10.1016/j.corsci.2010.09.029

    CAS  Article  Google Scholar 

  52. 52.

    Elsharif AM, Abubshait SA, Abdulazeez I, Abubshait HA (2020) Synthesis of a new class of corrosion inhibitors derived from natural fatty acid: 13-docosenoic acid amide derivatives for oil and gas industry. Arab J Chem 13:5363–5376. https://doi.org/10.1016/j.arabjc.2020.03.015

    CAS  Article  Google Scholar 

  53. 53.

    Kumar CP, Prashanth MK, Mohana KN, Jagadeesha MB, Raghu MS, Lokanath NK, Kumar KY (2020) Protection of mild steel corrosion by three new quinazoline derivatives: experimental and DFT studies. Surf Interfaces 18:100446. https://doi.org/10.1016/j.surfin.2020.100446

    CAS  Article  Google Scholar 

  54. 54.

    Emregül KC, Atakol O (2004) Corrosion inhibition of iron in 1 M HCl solution with Schiff base compounds and derivatives. Mater Chem Phys 83(2–3):373–379. https://doi.org/10.1016/j.matchemphys.2003.11.008

    CAS  Article  Google Scholar 

  55. 55.

    Vinutha MR, Venkatesha TV, Nagaraja C (2018) Anticorrosive ability of electrochemically synthesized 2, 2′-disulfanediyldianiline for mild steel corrosion: electrochemical and thermodynamic studies. Int J Ind Chem 9(2):185–197. https://doi.org/10.1007/s40090-018-0149-0

    CAS  Article  Google Scholar 

  56. 56.

    Mohsenifar F, Jafari H, Sayin K (2016) Investigation of thermodynamic parameters for steel corrosion in acidic solution in the presence of N, N′-bis (phloroacetophenone)-1, 2 propanediamine. J Bio Tribo Corros 2(1):1. https://doi.org/10.1007/s40735-015-0031-y

    Article  Google Scholar 

  57. 57.

    Kumari PP, Shetty P, Rao SA (2017) Electrochemical measurements for the corrosion inhibition of mild steel in 1 M hydrochloric acid by using an aromatic hydrazide derivative. Arab J Chem 10(5):653–663. https://doi.org/10.1016/j.arabjc.2014.09.005

    CAS  Article  Google Scholar 

  58. 58.

    Bouklah M, Hammouti B, Lagrenee M, Bentiss F (2006) Thermodynamic properties of 2, 5-bis (4-methoxyphenyl)-1, 3, 4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros Sci 48(9):2831–2842. https://doi.org/10.1016/j.corsci.2005.08.019

    CAS  Article  Google Scholar 

  59. 59.

    Haldhar R, Prasad D, Saxena A (2018) Myristica fragrans extract as an eco-friendly corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. J Environ Chem Eng 6(2):2290–2301. https://doi.org/10.1016/j.jece.2018.03.023

    CAS  Article  Google Scholar 

  60. 60.

    Fadhil AA, Khadom AA, Ahmed SK, Liu H, Fu C, Mahood HB (2020) Portulaca grandiflora as new green corrosion inhibitor for mild steel protection in hydrochloric acid: quantitative, electrochemical, surface and spectroscopic investigations. Surf Interfaces 20:100595. https://doi.org/10.1016/j.surfin.2020.100595

    Article  Google Scholar 

  61. 61.

    Chafiq M, Chaouiki A, Lgaz H, Salghi R, Gaonkar SL, Bhat KS, Marzouki R, Ali IH, Khan MI, Shimizu H, Chung IM (2020) Synthesis and corrosion inhibition evaluation of a new Schiff base hydrazone for mild steel corrosion in HCl medium: electrochemical, DFT, and molecular dynamics simulations studies. J Adhes Sci Technol 34:121283–121314. https://doi.org/10.1080/01694243.2019.1707561

    CAS  Article  Google Scholar 

  62. 62.

    Raghavendra N (2019) Expired lorazepam drug: a medicinal compound as green corrosion inhibitor for mild steel in hydrochloric acid system. Chem Afr 2(3):463–470. https://doi.org/10.1007/s42250-019-00061-2

    CAS  Article  Google Scholar 

  63. 63.

    Kannan P, Varghese A, Palanisamy K, Abousalem AS (2020) Evaluating prolonged corrosion inhibition performance of benzyltributylammonium tetrachloroaluminate ionic liquid using electrochemical analysis and Monte Carlo simulation. J Mol Liq 297:111855. https://doi.org/10.1016/j.molliq.2019.111855

    CAS  Article  Google Scholar 

  64. 64.

    Saraswat V, Yadav M, Obot IB (2020) Investigations on eco-friendly corrosion inhibitors for mild steel in acid environment: electrochemical, DFT and Monte Carlo simulation approach. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2020.124881

    Article  Google Scholar 

  65. 65.

    Ren Y, Luo Y, Zhang K, Zhu G, Tan X (2008) Lignin terpolymer for corrosion inhibition of mild steel in 10% hydrochloric acid medium. Corros Sci 50(11):3147–3153. https://doi.org/10.1016/j.corsci.2008.08.019

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Priya Frank.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lavanya, D.K., Frank, V.P., Vijaya, D.P. et al. Inhibition Effect of Thiourea Derivative for Mild Steel Corrosion in Acid Medium: Experimental and Theoretical Studies. J Bio Tribo Corros 7, 47 (2021). https://doi.org/10.1007/s40735-021-00487-7

Download citation

Keywords

  • Corrosion inhibitors
  • Polarization
  • Adsorption
  • Mannich base