Skip to main content

Advertisement

Log in

Analysis and Management of Current Road Traffic Noise

  • Noise Pollution (PHT Zannin, Section Editor)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Road traffic noise is one of the major environmental pollutants in cities around the world that continues to increase over the years despite the implementation of regulatory policies. The lack of engagement of national governments, the use of different or inadequate methodologies and the absence of implementation of measures to control road traffic noise are some of the causes why the population exposed to noise has not been reduced. There are a large number of recommendations, methodologies and procedures for adequate road traffic noise analysis and management in the scientific literature. The aim of this paper is to analyse the main findings of recent years with the objective of highlighting the current acoustic situation and to provide tools that can reverse it. Development of accurate noise analysis methods is close to reality. However, greater engagement and control by the authorities is needed for the implementation and efficiency of noise measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. European Commission. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise (END). Official Journal L 189 12–26, European Parliament and the Council of the European Union, Brussels, Belgium. 2002.

  2. World Health Organization (WHO) Regional Office for Europe. Burden of disease from environmental noise: quantification of healthy life years lost in Europe. WHO Regional Office for Europe. 2011. https://apps.who.int/iris/handle/10665/326424. Accessed 26 July 2022.

  3. World Health Organization (WHO) Regional Office for Europe. Environmental noise guidelines for the European Region. WHO Regional Office for Europe. 2018. https://apps.who.int/iris/handle/10665/279952. Accessed 26 July 2022.

  4. European Environment Agency (EEA). Environmental noise in Europe. Report No 22/2019. Luxembourg: Publications Office of the European Union. 2019. https://doi.org/10.2800/686249.

  5. European Environment Agency (EEA). The European environment — state and outlook 2020. Knowledge for transition to a sustainable Europe, European Environment Agency. Luxembourg: Publications Office of the European Union. 2019. https://doi.org/10.2800/96749.

  6. Alam P, Ahmad K, Afsar S, Akhter N. Noise monitoring, mapping, and modelling studies – a review. J Ecol Eng. 2020;21(4):82–93. https://doi.org/10.12911/22998993/119804.

    Article  Google Scholar 

  7. United Nations Environment Programme (UNEP). Listening to cities: from noisy environments to positive soundscapes. Frontiers 2022 Report: Emerging Issues of Environmental Concern Chapter 1. 2022. https://wedocs.unep.org/20.500.11822/38060. Accessed 26 July 2022.

  8. Rey Gozalo G, Barrigón Morillas JM, Gómez EV. Analysis of noise exposure in two small towns. Acta Acust United Acust. 2012;98(6):884–93. https://doi.org/10.3813/AAA.918572.

    Article  Google Scholar 

  9. Rey Gozalo G, Barrigón Morillas JM, Gómez Escobar V, Vílchez-Gómez R, Méndez Sierra JA, Carmona del Río FJ, Prieto Gajardo C. Study of the categorisation method using long-term measurements. Arch Acoust. 2013;38(3):397–405. https://doi.org/10.2478/aoa-2013-0047.

  10. European Topic Centre on Air pollution, transport, noise and industrial pollution. Noise exposure scenarios in 2020 and 2030 — outlooks for EU 28. Eionet Report - ETC/ATNI No. 2019/3; 2019. https://www.eionet.europa.eu/etcs/etcatni/products/etc-atni-reports/etc-atni-report-3-2019-noiseexposure-scenarios-in-2020-and-2030-outlooks-for-eu-28. Accessed 27 July 2022.

  11. European Topic Centre on air pollution, transport, noise and industrial pollution. Population exposure to noise from different sources in Europe. Eionet Report - ETC/ATNI; 2021. https://www.eea.europa.eu/data-and-maps/data/data-on-noise-exposure-8. Accessed 26 July 2022.

  12. Organization for Economic Cooperation and Development. Fighting noise in 1990s; Alexandre, A., Barde, J.-P., Eds.; OECD Publications: Paris, France 1991.

  13. U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Noise Map 2016 – 2018. Washington, DC: U.S. Department of Transportation, Bureau of Transportation Statistics. 2020. https://data.bts.gov/stories/s/National-Transportation-Noise-Map/ri89-bhxh/. Accessed 27 July 2022.

  14. International Transport Forum (ITF). ITF Transport Outlook 2019. https://doi.org/10.1787/9789282108000-en.

  15. United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3; 2022. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf. Accessed 27 July 2022.

  16. Rodrigue J.-P. The geography of transport systems (5th ed.). Routledge 2020. https://doi.org/10.4324/9780429346323.

  17. Arana M, San Martin R, Salinas JC. People exposed to traffic noise in European agglomerations from noise maps. A critical review Noise Mapp. 2014;1:40–9. https://doi.org/10.2478/noise-2014-0005.

    Article  Google Scholar 

  18. King EA, Murphy E. Environmental noise – “forgotten” or “ignored” pollutant? Appl Acoust. 2016;112:211–5. https://doi.org/10.1016/j.apacoust.2016.05.023.

    Article  Google Scholar 

  19. •• Murphy E, Faulkner JP, Douglas O. Current state-of-the-art and new directions in strategic environmental noise mapping. Curr Pollut Rep. 2020;6(2):54–64. https://doi.org/10.1007/s40726-020-00141-9. This review shows the progress of strategic noise mapping in the EU since the introduction of the Environmental Noise Directive.

  20. Licitra G. (Ed.). Noise mapping in the EU: models and procedures (1st ed.). CRC Press; 2012. https://doi.org/10.1201/b12885.

  21. Centre for Strategy and Evaluation Services (CSES). Evaluation of Directive 2002/49/EC relating to the assessment and management of environmental noise. Workshop working paper 1. The second implementation review of the END—emerging findings. Brussels: CEES, 2015. https://ec.europa.eu/environment/noise/pdf/Working%20Paper%201%20(implementation).pdf. Accessed 27 July 2022.

  22. Licitra G, Ascari E. Noise mapping in the EU: state of art and 2018 challenges. In: 47th International Congress and Exposition on Noise Control Engineering: Impact of Noise Control Engineering. Chicago, USA: Inter-Noise 2018, 26–29 August 2018.

  23. Hinze B. Noise mapping in Australia: completed studies, goals and outcomes. In: 44th International Congress and Exposition on Noise Control Engineering. San Francisco, USA: INTER-NOISE 2015, 9–12 August 2015.

  24. Commission Directive (EU) 2015/996 of 19 May 2015 establishing common noise assessment methods according to Directive 2002/49/EC of the European Parliament and of the Council. Brussels: The European Parliament and the Council of the European Union 2015.

  25. Joint Research Centre, Institute for Health and Consumer Protection, Kephalopoulos S, Paviotti M, Anfosso-Lédée F. Common noise assessment methods in Europe (CNOSSOS-EU): to be used by the EU Member States for strategic noise mapping following adoption as specified in the Environmental Noise Directive 2002/49/EC. Luxembourg: Publications Office of the European Union; 2012. https://doi.org/10.2788/32029.

  26. Peeters B, Blokland GV. The noise emission model for European road traffic. Deliverable 11 of the IMAGINE project 2007. http://www.imagine-project.org/. Accessed 30 July 2022.

  27. Dutilleux G, Defrance J, Ecotière D, Gauvreau B, Bérengier M, Besnard F, et al. NMPB-ROUTES-2008: the revision of the French method for road traffic noise prediction. Acta Acust United Acust. 2010;96(3):452–62. https://doi.org/10.3813/AAA.918298.

    Article  Google Scholar 

  28. Peeters B, van Blokland G. Correcting the CNOSSOS-EU road noise emission values. In: 11th European Congress and Exposition on Noise Control Engineering. Crete, Greece: Euronoise 2018, 27–31 May 2018.

  29. Morley DW, de Hoogh K, Fecht D, Fabbri F, Bell M, Goodman PS, et al. International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies. Environ Pollut. 2015;206:332–41. https://doi.org/10.1016/j.envpol.2015.07.031.

    Article  CAS  Google Scholar 

  30. Guarnaccia C, Bandeira J, Coelho MC, Fernandes P, Teixeira J, Ioannidis G, et al. Statistical and semi-dynamical road traffic noise models comparison with field measurements. AIP Conf Proc. 2018;1982:020039. https://doi.org/10.1063/1.5045445.

  31. Bertellino F, Cicoira P, Gerola F, Clementel M, Scaramuzza P, Nardelli M. Noise mapping of agglomerations: a comparison of interim standards vs new CNOSSOS-EU method in a real case study. In: 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future. Hamburg, Germany: INTER-NOISE 2016, 21–24 August, 1356–1366 2016.

  32. Khan J, Kakosimos K, Jensen SS, Hertel O, Sørensen M, Gulliver J, Ketzel M. The spatial relationship between traffic-related air pollution and noise in two Danish cities: implications for health-related studies. Sci Total Environ. 2020;726. https://doi.org/10.1016/j.scitotenv.2020.138577.

  33. Khan J, Ketzel M, Jensen SS, Gulliver J, Thysell E, Hertel O. Comparison of road traffic noise prediction models: CNOSSOS-EU, Nord 2000 and TRANEX. Environ Pollut. 2021;270:116240. https://doi.org/10.1016/j.envpol.2020.116240.

    Article  CAS  Google Scholar 

  34. • Rey Gozalo G, Gómez EV. Uncertainty evaluation of road traffic noise models in two Ibero-American cities. Appl Acoust. 2021;180:108134. https://doi.org/10.1016/j.apacoust.2021.108134. This study shows an analysis of the uncertainties of the main road traffic noise calculation methods at a large number of sampling points on different road types.

  35. Czyzewski A, Ejsmont JA. Validation of Harmonoise/IMAGE traffic noise prediction model by long term noise and traffic monitoring. In: Joint Baltic-Nordic Acoustics Meeting. Reykjavik, Iceland: 17–19 August 2008.

  36. de León G, Fidecaro F, Cerchiai M, Reggiani M, Ascari E, Licitra G. Implementation of CNOSSOS-EU method for road noise in Italy. In: 23rd International Congress on Acoustics: Integrating 4th EAA Euroregio, ICA 2019. Aachen, Germany, 9–23 September 2019.

  37. Commission Delegated Directive (EU) 2021/1226 of 21 December 2020 amending, for the purposes of adapting to scientific and technical progress, Annex II to Directive 2002/49/EC of the European Parliament and of the Council as regards common noise assessment methods. Brussels: The European Parliament and the Council of the European Union; 2021. http://data.europa.eu/eli/dir_del/2021/1226/oj. Accessed 30 July 2022.

  38. Pallas MA, Dutilleux G. Experimental confrontation of medium heavy vehicle noise emission to the CNOSSOS-EU prediction method. In: 11th European Congress and Exposition on Noise Control Engineering. Crete, Greece: Euronoise 2018, 27–31 May 2018.

  39. Faulkner J-P, Murphy E. Road traffic noise modelling and population exposure estimation using CNOSSOS-EU: Insights from Ireland. Appl Acoust. 2022;192:108692. https://doi.org/10.1016/j.apacoust.2022.108692.

    Article  Google Scholar 

  40. Kok A. Refining the CNOSSOS-EU calculation method for environmental noise. In: 48th International Congress and Exhibition on Noise Control Engineering. Madrid, Spain: INTER-NOISE 2019, 6–19 June 2019.

  41. Kok A, van Beek A. Amendments for CNOSSOS-EU: description of issues and proposed solutions. Bilthoven, Netherlands: National Institute for Public Health and the Environment. 2019. https://doi.org/10.21945/RIVM-2019-0023.

  42. Umwelt Bundes Amt. Vorläufige Berechnungsmethode zur Ermittlung der Belastetenzahlen durch Umge-Bungslärm—VBEB. Dessau, Germany: Federal German Gazette. 2007.

  43. Arana M, San Martin R, Salinas JC. People exposed to traffic noise in European agglomerations from noise maps. A critical review Noise Mapping. 2014;1(1):40–9. https://doi.org/10.2478/noise-2014-0005.

    Article  Google Scholar 

  44. Vienneau D, Héritier H, Foraster M, Eze IC, Schaffner E, Thiesse L, Röösli, M. Façades, floors and maps – influence of exposure measurement error on the association between transportation noise and myocardial infarction. Environ Int. 2019;123:399–406. https://doi.org/10.1016/j.envint.2018.12.015.

  45. Murphy E, Douglas O. Population exposure to road traffic noise: experimental results from varying exposure estimation approaches. Transp Res D Transp Environ. 2018;58:70–9. https://doi.org/10.1016/j.trd.2017.11.006.

    Article  Google Scholar 

  46. Morley DW, de Hoogh K, Fecht D, Fabbri F, Bell M, Goodman PS, Gulliver J. International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies. Environ Pollut. 2015;206:332–341. https://doi.org/10.1016/j.envpol.2015.07.031.

  47. Cai Y, Hodgson S, Blangiardo M, Gulliver J, Morley D, Fecht D, Hansell AL. Road traffic noise, air pollution and incident cardiovascular disease: a joint analysis of the HUNT, EPIC-Oxford and UK Biobank cohorts. Environment Int. 2018;114:191–201. https://doi.org/10.1016/j.envint.2018.02.048.

  48. Cai Y, Zijlema WL, Sørgjerd EP, Doiron D, de Hoogh K, Hodgson S, Kvaløy K. Impact of road traffic noise on obesity measures: observational study of three European cohorts. Environ Res. 2020;2020(191):110013. https://doi.org/10.1016/j.envres.2020.110013.

    Article  CAS  Google Scholar 

  49. Hao G, Zuo L, Xiong P, Chen L, Liang X, Jing C. Associations of PM2.5 and road traffic noise with mental health: evidence from UK Biobank. Environ Res. 2022;207:112221. https://doi.org/10.1016/j.envres.2021.112221.

  50. Hao G, Zuo L, Weng X, Fei Q, Zhang Z, Chen L, Wang Z, Jing C. Associations of road traffic noise with cardiovascular diseases and mortality: longitudinal results from UK Biobank and meta-analysis. Environ Res. 2022;212:113129. https://doi.org/10.1016/j.envres.2022.113129.

    Article  CAS  Google Scholar 

  51. Li D, Wang L, Yang Y, Hu Y, Wang Y, Tian Y, Wang F. Associations of long-term exposure to ambient air pollution and road traffic noise with sleep health in UK Biobank. J Affect Disord. 2022;310:1–9. https://doi.org/10.1016/j.jad.2022.04.136.

    Article  CAS  Google Scholar 

  52. European Commission Working Group Assessment of Exposure to (WG-AEN). Good practice guide for strategic noise mapping and the production of associated data on noise exposure. WG-AEN: version 2, 13th August. 2007.

  53. Centro de Estudios y Experimentación de Obras Públicas (CEDEX), Ministerio para la Transición Ecológica y el Reto Demográfico. Guía básica de recomendaciones para la aplicación de los métodos comunes de evaluación del ruido en Europa (CNOSSOS-EU). Recomendaciones para su aplicación a la evaluación del ruido de fuentes industriales, carreteras, ferrocarriles y aglomeraciones. Madrid, Spain: CEDEX. 2022.

  54. Aumond P, Can A, Mallet V, Gauvreau B, Guillaume G. Global sensitivity analysis for road traffic noise modelling. Appl Acoust. 2021;176:107899. https://doi.org/10.1016/j.apacoust.2020.107899

  55. Montes GD, Barrigón Morillas JM, Rey GG. Acoustic behaviour of plates made of different materials for measurements with the microphone flush mounted. Appl Acoust. 2018;132:135–41. https://doi.org/10.1016/j.apacoust.2017.11.011.

    Article  Google Scholar 

  56. • Montes González D, Barrigón Morillas JM, Rey Gozalo G, Atanasio MP. Microphone position and noise exposure assessment of building façades. Appl Acoust. 2020;160:107157. https://doi.org/10.1016/j.apacoust.2019.107157. This study shows the importance of the consideration of sound reflections on façade and the corrections applied following the recommendations of ISO 1996-2.

  57. Van Hauwermeiren W, Filipan K, Botteldooren D, De Coensel B. Opportunistic monitoring of pavements for noise labeling and mitigation with machine learning. Transp Res D Transp Environ. 2021;90:102636. https://doi.org/10.1016/j.trd.2020.102636.

  58. Licitra G, Moro A, Teti L, Del Pizzo A, Bianco F. Modelling of acoustic ageing of rubberized pavements. Appl Acoust. 2019;146:237–45. https://doi.org/10.1016/j.apacoust.2018.11.009.

    Article  Google Scholar 

  59. Freitas EF, Martins FF, Oliveira A, Segundo IR, Torres H. Traffic noise and pavement distresses: modelling and assessment of input parameters influence through data mining techniques. Appl Acoust. 2018;138:147–55. https://doi.org/10.1016/j.apacoust.2018.03.019.

    Article  Google Scholar 

  60. Cai M, Lan Z, Zhang Z, Wang H. Evaluation of road traffic noise exposure based on high-resolution population distribution and grid-level noise data. Build Environ. 2019;147:211–20. https://doi.org/10.1016/j.buildenv.2018.08.037.

    Article  Google Scholar 

  61. •• Barrigón Morillas JM, Rey Gozalo G, Montes González D, Sánchez-Fernández M, Bachiller LA. A comprehensive experimental study of the influence of temperature on urban road traffic noise under real-world conditions. Environ Poll. 2022;309:119761. https://doi.org/10.1016/j.envpol.2022.119761. A highly significant relationship between urban road traffic noise and temperature is found through long-term measurements.

  62. Trikootam SC, Hornikx M. The wind effect on sound propagation over urban areas: experimental approach with an uncontrolled sound source. Build Environ. 2019;149:561–70. https://doi.org/10.1016/j.buildenv.2018.11.037.

    Article  Google Scholar 

  63. Suárez E, Barros JL. Traffic noise mapping of the city of Santiago de Chile. Sci Total Environ. 2014;466–467:539–46. https://doi.org/10.1016/j.scitotenv.2013.07.013.

    Article  CAS  Google Scholar 

  64. Raghavan R, Verma DC, Pandey D, Anand R, Pandey BK, Singh H. Optimized building extraction from high-resolution satellite imagery using deep learning. Multimed Tools Appl. 2022. https://doi.org/10.1007/s11042-022-13493-9.

    Article  Google Scholar 

  65. Stoter J, Peters R, Commandeur T, Dukai B, Kumar K, Ledoux H. Automated reconstruction of 3D input data for noise simulation. Comput Environ Urban Syst. 2020;80:101424. https://doi.org/10.1016/j.compenvurbsys.2019.101424.

  66. Benocci R, Bisceglie A, Angelini F, Zambon G. Influence of traffic noise from local and surrounding areas on high-rise buildings. Appl Acoust. 2020;166:107362. https://doi.org/10.1016/j.apacoust.2020.107362.

  67. Alam P, Ahmad K, Afsar SS, Akhtar N. 3D noise mapping for preselected locations of urban area with and without noise barriers: a case study of Delhi. India Noise Mapping. 2020;7(1):74–83. https://doi.org/10.1515/noise-2020-0006.

    Article  Google Scholar 

  68. Puyana-Romero V, Cueto JL, Gey R. A 3D GIS tool for the detection of noise hot-spots from major roads. Transp Res D Transp Environ. 2020;84:102376. https://doi.org/10.1016/j.trd.2020.102376.

    Article  Google Scholar 

  69. Vienneau D, Héritier H, Foraster M, Eze IC, Schaffner E, Thiesse L, Röösli M. Façades, floors and maps – influence of exposure measurement error on the association between transportation noise and myocardial infarction. Environ Int. 2019;123:399–406. https://doi.org/10.1016/j.envint.2018.12.015.

  70. Kaddoura I, Kröger L, Nagel K. An activity-based and dynamic approach to calculate road traffic noise damages. Transp Res D Transp Environ. 2017;54:335–47. https://doi.org/10.1016/j.trd.2017.06.005.

    Article  Google Scholar 

  71. Sampaio C, Bandeira JM, Macedo E, Vilaça M, Guarnaccia C, Friedrich B, Coelho MC. A dynamic link-based eco-indicator for supporting equitable traffic management strategies. Transp Res Proc. 2019;37:43–50. https://doi.org/10.1016/j.trpro.2018.12.164.

  72. Lesieur A, Mallet V, Aumond P, Can A. Data assimilation for urban noise mapping with a meta-model. Appl Acoust. 2021;178:107938. https://doi.org/10.1016/j.apacoust.2021.107938.

  73. Rey Gozalo G, Gómez Escobar V, Barrigón Morillas JM, Montes González D, Atanasio MP. Statistical attribution of errors in urban noise modeling. Appl Acoust. 2019;153:20–9. https://doi.org/10.1016/j.apacoust.2019.04.001.

    Article  Google Scholar 

  74. Bellucci P, Peruzzi L, Zambon G. LIFE DYNAMAP project: the case study of Rome. Appl Acoust. 2017;117:193–206. https://doi.org/10.1016/j.apacoust.2016.04.022.

    Article  Google Scholar 

  75. Nourani V, Gökçekuş H, Umar IK, Najafi H. An emotional artificial neural network for prediction of vehicular traffic noise. Sci Total Environ. 2020;707:136134. https://doi.org/10.1016/j.scitotenv.2019.136134.

    Article  CAS  Google Scholar 

  76. Melo RA, Pimentel RL, Lacerda DM, Silva WM. Applicability of models to estimate traffic noise for urban roads. J Environ Health Sci Eng. 2015;13:83. https://doi.org/10.1186/s40201-015-0240-9.

    Article  Google Scholar 

  77. Hammer E, Egger S, Saurer T, Bühlmann E. Traffic noise emission modelling at lower speeds. In: 23rd International Congress on Sound and Vibration. Greece, Athens: ICSV23, 10–14 July 2016.

  78. Estévez-Mauriz L, Forssén J. Dynamic traffic noise assessment tool: a comparative study between a roundabout and a signalised intersection. Appl Acoust. 2018;130:71–86. https://doi.org/10.1016/j.apacoust.2017.09.003.

    Article  Google Scholar 

  79. Can A, Aumond P. Estimation of road traffic noise emissions: the influence of speed and acceleration. Transp Res D Transp Environ. 2018;58:155–71. https://doi.org/10.1016/j.trd.2017.12.002.

    Article  Google Scholar 

  80. Vergara Elgueda DI. Elaboración de mapa de ruido dinámico de viales basado en sistema de medición de flujo vehicular en tiempo real. Chile, Valdivia: Final degree thesis, Universidad Austral de Chile, September. 2019.

  81. AlKheder S, Almutairi R. Roadway traffic noise modelling in the hot hyper-arid Arabian Gulf region using adaptive neuro-fuzzy interference system. Transp Res D Transp Environ. 2021;97:102917. https://doi.org/10.1016/j.trd.2021.102917.

  82. • Guarnaccia C. EAgLE: equivalent acoustic level estimator proposal. Sensors. 2020;20(3):701. https://doi.org/10.3390/s20030701. This study shows the detection of vehicle type and speed using video cameras.

  83. Zambon G, Roman HE, Benocci R. Scaling model for a speed-dependent vehicle noise spectrum. J Traffic Transport Engin (EE). 2017;4(3):230–9. https://doi.org/10.1016/j.jtte.2017.05.001.

    Article  Google Scholar 

  84. •• Barrigón Morillas JM, Rey Gozalo G, Montes González D, Atanasio Moraga P, Vílchez-Gómez R. Noise pollution and urban planning. Curr Pollut Rep. 2018;4(3):208–19. https://doi.org/10.1007/s40726-018-0095-7. An extensive review of different in situ urban noise assessment methodologies is carried out in this study.

  85. Barrigón Morillas JM, Gómez Escobar V, Méndez Sierra JA, Vílchez-Gómez R, Trujillo CJ. An environmental noise study in the city of Cáceres. Spain Appl Acoust. 2002;63:1061–70. https://doi.org/10.1016/S0003-682X(02)00030-0.

    Article  Google Scholar 

  86. Rey Gozalo G, Barrigón Morillas JM, Gómez EV. Urban streets functionality as a tool for urban pollution management. Sci Total Environ. 2013;461–462:453–61. https://doi.org/10.1016/j.scitotenv.2013.05.017.

    Article  CAS  Google Scholar 

  87. Zambon G, Benocci R, Bisceglie A, Roman HE, Bellucci P. The LIFE DYNAMAP project: towards a procedure for dynamic noise mapping in urban areas. Appl Acoust. 2017;124:52–60. https://doi.org/10.1016/j.apacoust.2016.10.022.

    Article  Google Scholar 

  88. •• Le Bescond V, Can A, Aumond P, Gastineau P. Open-source modeling chain for the dynamic assessment of road traffic noise exposure. Transp Res D Transp Environ. 2021;94:102793. https://doi.org/10.1016/j.trd.2021.102793. This paper concludes that the consideration of population dynamics allows to improve the estimation of the amount of people exposed to noise.

  89. Quartieri J, Mastorakis NE, Iannone G, Guarnaccia C, Ambrosio SD, Troisi A, Lenza TLL. A review of traffic noise predictive noise models. Recent Adv Appl Theor Mech. 2009:72–80.

  90. Ahmed Adulaimi AA, Pradhan B, Chakraborty S, Abdullah AA. Traffic noise modelling using land use regression model based on machine learning, statistical regression and GIS. Energies. 2021;14:5095. https://doi.org/10.3390/en14165095.

    Article  Google Scholar 

  91. Harouvi O, Ben-Elia E, Factor R, de Hoogh K, Kloog I. Noise estimation model development using high-resolution transportation and land use regression. J Expo Sci Environ Epidemiol. 2018. https://doi.org/10.1038/s41370-018-0035-z.

    Article  Google Scholar 

  92. Xu X, Ge Y, Wang W, Lei X, Kan H, Cai J. Application of land use regression to map environmental noise in Shanghai. China Environ Int. 2022;161:107111. https://doi.org/10.1016/j.envint.2022.107111.

  93. ••  Rey Gozalo G, Suárez E, Montenegro AL, Arenas JP, Barrigón Morillas JM, Montes GD. Noise estimation using road and urban features. Sustainability. 2020;12:9217. https://doi.org/10.3390/su12219217. This study shows that urban variables alone can provide highly significant estimates of noise levels.

  94. Tiwari SK, Kumaraswamidhas LA, Gautam C, Garg N. An auto-encoder based LSTM model for prediction of ambient noise levels. Appl Acoust. 2022;195:108849. https://doi.org/10.1016/j.apacoust.2022.108849.

  95. • Rey Gozalo G, Aumond P, Can A. Variability in sound power levels: implications for static and dynamic traffic models. Transp Res D Transp Environ. 2020;84:102339. https://doi.org/10.1016/j.trd.2020.102339. The distributions of vehicle emission level variability may influence predictions and make it difficult to compare static and dynamic noise models.

  96. Brambilla G, Benocci R, Confalonieri C, Roman HE, Zambon G. Classification of urban road traffic noise based on sound energy and eventfulness indicators. Appl Sci. 2020;10(7):2451. https://doi.org/10.3390/app10072451.

    Article  CAS  Google Scholar 

  97. Alsina-Pagès RM, Alías F, Socoró JC, Orga F, Benocci R, Zambon G. Anomalous events removal for automated traffic noise maps generation. Appl Acoust. 2019;151:183–92. https://doi.org/10.1016/j.apacoust.2019.03.007.

    Article  Google Scholar 

  98. Alsina-Pagès R, Garcia Almazán R, Vilella M, Pons M. Noise events monitoring for urban and mobility planning in Andorra la Vella and Escaldes-Engordany. Environments. 2019;6(2):24. https://doi.org/10.3390/environments6020024.

    Article  Google Scholar 

  99. Wei W, Van Renterghem T, De Coensel B, Botteldooren D. Dynamic noise mapping: a map-based interpolation between noise measurements with high temporal resolution. Appl Acoust. 2016;101:127–40. https://doi.org/10.1016/j.apacoust.2015.08.0.

    Article  Google Scholar 

  100. Aumond P, Can A, Rey Gozalo G, Fortin N, Suárez E. Method for in situ acoustic calibration of smartphone-based sound measurement applications. Appl Acoust. 2020;166:107337. https://doi.org/10.1016/j.apacoust.2020.1073.

    Article  Google Scholar 

  101. Ventura R, Mallet V, Issarny V. Assimilation of mobile phone measurements for noise mapping of a neighborhood. J Acoust Soc Am. 2018;144(3):1279–92. https://doi.org/10.1121/1.5052173.

    Article  Google Scholar 

  102. Picaut J, Fortin N, Bocher E, Petit G, Aumond P, Guillaume G. An open-science crowdsourcing approach for producing community noise maps using smartphones. Build Environ. 2019;148:20–33. https://doi.org/10.1016/j.buildenv.2018.10.049.

    Article  Google Scholar 

  103. Van Der Eerden F, Graafland F, Wessels P, Segers A, Salomons E. Model based monitoring of traffic noise in an urban district. In: 43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control. Australia, Melbourne: Internoise 2014, 16–19 November 2014.

  104. Baclet S, Venkataraman S, Rumpler R, Billsjö R, Horvath J, Österlund PE. From strategic noise maps to receiver-centric noise exposure sensitivity mapping. Transp Res D Transp Environ. 2022;102:103114. https://doi.org/10.1016/j.trd.2021.103114.

  105. European Commission. Science for Environment Policy. Future Brief: Noise abatement approaches. Bristol, UK: European Commission DG Environment by the Science Communication Unit, UWE. 2017. https://data.europa.eu/doi/10.2779/016648.

  106. Pallas M-A, Cesbron J, Luzzi S, Busa L, Colucci G, Bellomini R. Electric Vehicle noIse control by Assessment and optimisation of tyre/road interaction. Life E-VIA, Life18 ENV/IT/000201, version 1.1; 2020.

  107. Pallas M-A, Bérengier M, Chatagnon R, Czuka M, Conter M, Muirhead M. Towards a model for electric vehicle noise emission in the European prediction method CNOSSOS-EU. Appl Acoust. 2016;113:89–101. https://doi.org/10.1016/j.apacoust.2016.06.012.

    Article  Google Scholar 

  108. Campello-Vicente H, Peral-Orts R, Campillo-Davo N, Velasco-Sanchez E. The effect of electric vehicles on urban noise maps. Appl Acoust. 2017;116:59–64. https://doi.org/10.1016/j.apacoust.2016.09.018.

    Article  Google Scholar 

  109. Yamauchi K, Yabuno M, Yamasaki R. Sound power level of electric vehicles running in steady low speed. Acoust Sci & Tech. 2020;41(3):626–629. https://doi.org/10.1250/ast.41.626.

  110. Ibarra D, Ramírez-Mendoza R, López E. Noise emission from alternative fuel vehicles: Study case. Appl Acoust. 2017;118:58–65. https://doi.org/10.1016/j.apacoust.2016.11.010.

    Article  Google Scholar 

  111. Laib F, Braun A, Rid W. Modelling noise reductions using electric buses in urban traffic. A case study from Stuttgart, Germany. Transp Res Procedia. 2018;2019(37):377–384. https://doi.org/10.1016/j.trpro.2018.12.206.

  112. Rossi IA, Vienneau D, Ragettli MS, Flückiger B, Röösli M. Estimating the health benefits associated with a speed limit reduction to thirty kilometres per hour: a health impact assessment of noise and road traffic crashes for the Swiss city of Lausanne. Environ Int. 2020;145:106126. https://doi.org/10.1016/j.envint.2020.106126.

  113. Rodrigues RC. Traffic noise and energy Energy Reports. 2020;6:177–83. https://doi.org/10.1016/j.egyr.2019.08.039.

    Article  Google Scholar 

  114. Coelho MC, Guarnaccia C. Driving information in a transition to a connected and autonomous vehicle environment: impacts on pollutants, noise and safety. Transp Res Proc. 2020;45:740–6. https://doi.org/10.1016/j.trpro.2020.02.103.

    Article  Google Scholar 

  115. • Cesbron J, Bianchetti S, Pallas M-A, Le Bellec A, Gary V, Klein P. Road surface influence on electric vehicle noise emission at urban speed. Noise Mapping. 2021;8(1):217–27. https://doi.org/10.1515/noise-2021-0017. This study shows how the type of road surface contributes more to noise abatement than the use of electric vehicles.

  116. Praticò FG, Anfosso-Lédée F. Trends and issues in mitigating traffic noise through quiet pavements. Proc Soc Behav Sci. 2012;53:203–12. https://doi.org/10.1016/j.sbspro.2012.09.873.

    Article  Google Scholar 

  117. • Praticò FG. “Noisy” issues in road acoustics: a white paper. J Road Eng. 2022;2:61–9. https://doi.org/10.1016/j.jreng.2022.03.001. Rubberised asphalt shows high reductions in road traffic noise (8-10 dBA).

  118. Del Pizzo A, Teti L, Moro A, Bianco F, Fredianelli L, Licitra G. Influence of texture on tyre road noise spectra in rubberized pavements. Appl Acoust. 2020;159:107080. https://doi.org/10.1016/j.apacoust.2019.107080.

  119. Poulikakos LD, Athari S, Mikhailenko P, Pieren R, Heutschi K. Effect of waste materials on acoustical properties of semi-dense asphalt mixtures. Transp Res D Transp Environ. 2022;102:103154. https://doi.org/10.1016/j.trd.2021.103154.

  120. Piao Z, Heutschi K, Pieren R, Poulikakos LD, Hellweg S. Environmental trade-offs for using low-noise pavements: life cycle assessment with noise considerations. Sci Total Environ. 2022;842:156846. https://doi.org/10.1016/j.scitotenv.2022.156846.

  121. Barrigón Morillas JM, Gómez Escobar V, Rey GG. Noise source analyses in the acoustical environment of the medieval centre of Cáceres (Spain). Appl Acoust. 2013;74(4):526–34. https://doi.org/10.1016/j.apacoust.2012.10.001.

    Article  Google Scholar 

  122. Rey Gozalo G, Barrigón Morillas JM. Perceptions and effects of the acoustic environment in quiet residential areas. J Acoust Soc Am. 2017;141(4):2418–29. https://doi.org/10.1121/1.4979335.

    Article  Google Scholar 

  123. Monazzam MR, Karimi E, Shahbazi H, Shahidzadeh H. Effect of cycling development as a non-motorized transport on reducing air and noise pollution-case study: central districts of Tehran. Urban Clim. 2021;38:100887. https://doi.org/10.1016/j.uclim.2021.100887.

  124. Ögren M, Molnár P, Barregard L. Road traffic noise abatement scenarios in Gothenburg 2015–2035. Environ Res. 2018;164:516–21. https://doi.org/10.1016/j.envres.2018.03.011.

    Article  CAS  Google Scholar 

  125. Amarilla RSD, Scoczynski Ribeiro R, Henrique de Avelar Gomes M, Pereira Sousa R, Henrique Sant’Ana L, Eduardo Catai R. Acoustic barrier simulation of construction and demolition waste: a sustainable approach to the control of environmental noise. Appl Acoust. 2021;182:108201. https://doi.org/10.1016/j.apacoust.2021.108201.

  126. Gil-Lopez T, Medina-Molina M, Verdu-Vazquez A, Martel-Rodriguez B. Acoustic and economic analysis of the use of palm tree pruning waste in noise barriers to mitigate the environmental impact of motorways. Sci Total Environ. 2017;584–585:1066–76. https://doi.org/10.1016/j.scitotenv.2017.01.162.

    Article  CAS  Google Scholar 

  127. Monazzam MR, Abbasi M, Yazdanirad S. Performance evaluation of T-shaped noise barriers covered with oblique diffusers using boundary element method. Arch Acoust. 2019;44(3):521–31. https://doi.org/10.24425/aoa.2019.129267.

    Article  Google Scholar 

  128. Peiró-Torres MP, Ferri M, Godinho LM, Amado-Méndes, Jose Vea Folch, F., Redondo J. Normal incidence sound insulation provided by Sonic Crystal Acoustic Screens made from rigid scatterers - assessment of different simulation methods. Acta Acustica. 2021;5:28. https://doi.org/10.1051/aacus/2021021.

  129. Ahac M, Ahac S, Lakušić S. Long-term sustainability approach in road traffic noise wall design. Sustainability. 2021;13(2):536. https://doi.org/10.3390/su13020536.

    Article  Google Scholar 

  130. Martinez-Orozco JM, Barba A. Determination of insertion loss of noise barriers in Spanish roads. Appl Acoust. 2022;186:108435. https://doi.org/10.1016/j.apacoust.2021.108435.

  131. Halim H, Abdullah R, Ali AA, Nor MJ. Effectiveness of existing noise barriers: comparison between vegetation, concrete hollow block, and panel concrete. Procedia Environ Sci. 2015;30:217–21. https://doi.org/10.1016/j.proenv.2015.10.039.

    Article  Google Scholar 

  132. Ow LF, Ghosh S. Urban cities and road traffic noise: reduction through vegetation. Appl Acoust. 2017;120:15–20. https://doi.org/10.1016/j.apacoust.2017.01.007.

    Article  Google Scholar 

  133. Van Renterghem T. Towards explaining the positive effect of vegetation on the perception of environmental noise. Urban For Urban Green. 2019;40:133–44. https://doi.org/10.1016/j.ufug.2018.03.007.

    Article  Google Scholar 

  134. Van Renterghem T, Botteldooren D. Landscaping for road traffic noise abatement: model validation. Environ Model Softw. 2018;109:17–31. https://doi.org/10.1016/j.envsoft.2018.08.012.

    Article  Google Scholar 

  135. Jang D-J, Kim S-A. Optimization design method for noise barrier tunnel junction on merging lanes using quad meshes. J Asian Archit Build. 2022;21(2):211–23. https://doi.org/10.1080/13467581.2020.1869011.

    Article  Google Scholar 

  136. Medeiros AFDD, Pimentel RL, Melo RAD, Araújo BCDD, Brasileiro TDC. Investigation of traffic noise attenuation potential of an urban highway underpass. Appl Acoust. 2022;191: 108682. https://doi.org/10.1016/j.apacoust.2022.108682.

    Article  Google Scholar 

  137. Liu C, Hornikx M. Effect of water content on noise attenuation over vegetated roofs: results from two field studies. Build Environ. 2018;146:1–11. https://doi.org/10.1016/j.buildenv.2018.09.022.

    Article  CAS  Google Scholar 

  138. Yang W, Jeon JY. Design strategies and elements of building envelope for urban acoustic environment. Build Environ. 2020;182: 107121. https://doi.org/10.1016/j.buildenv.2020.107121.

    Article  Google Scholar 

  139. • Forssén J, Estévez-Mauriz L, Gustafson A, Kropp W. How can we plan for a good urban sound environment, focusing on road traffic noise? IOP Conference Series: Earth and Environmental Science. 2020;588(5):052037. https://doi.org/10.1088/1755-1315/588/5/052037. This study shows that the design of building morphology, creating a shielded side of dwellings, produces high reductions in road traffic noise (20 dBA).

  140. Macedo E, Pascale A, Ferreira E, Guarnaccia C, Coelho MC. Experimental evaluation of gear-shift and internal-combustion engine variables on fuel consumption, noise and pollutant emissions. Transp Res Proc. 2022;62:703–10. https://doi.org/10.1016/j.trpro.2022.02.087.

    Article  Google Scholar 

  141. • Asensio C, Pavón I, Ramos C, López JM, Pamiés Y, Moreno D, de Arcas G. Estimation of the noise emissions generated by a single vehicle while driving. Transp Res D Transp Environ. 2021;95:102865. https://doi.org/10.1016/j.trd.2021.102865This study shows a useful tool that can help drivers avoid particularly noise-sensitive areas by estimating the noise emitted by a single vehicle.

Download references

Funding

This work is funded by Consejería de Economía, Ciencia y Agenda Digital of Junta de Extremadura, through grants for attracting and returning research talent to R&D&I centres belonging to the Extremadura Science, Technology and Innovation System (TA18019), where University of Extremadura was the beneficiary entity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Rey-Gozalo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Noise Pollution

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey-Gozalo, G., Barrigón Morillas, J.M. & Montes González, D. Analysis and Management of Current Road Traffic Noise. Curr Pollution Rep 8, 315–327 (2022). https://doi.org/10.1007/s40726-022-00234-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00234-7

Keywords

Navigation