Advertisement

Current Pollution Reports

, Volume 4, Issue 2, pp 128–142 | Cite as

Nanoecotoxicological Reports of Engineered Metal Oxide Nanoparticles on Algae

  • Pallavi Saxena
  • Harish
Water Pollution (Gurpal Toor and Long Nghiem, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Water Pollution

Abstract

Use of nanotechnology-based products is growing at large scale globally; consequently, releasing nanoparticles are entering into aquatic ecosystems. The higher surface area versus volume ratio in comparison with bulk materials makes the nanoparticles biologically more reactive. Therefore, investigating the potential aquatic toxicity of nanoparticles has become an important issue. Algae are an ideal group to study responses of different engineered nanoparticles. Present review aims to analyse the nanoecotoxicological impact of engineered metal oxide nanoparticles on algal physiology. Impacts of nanoparticles of titanium dioxide, zinc oxide, copper oxide, silica oxides, cerium oxides, iron oxide, aluminium oxide and nickel oxide are covered in details. Different factors like size, shape, pH, dose, exposure time, photo-catalytic activity, etc. that affect the toxicity of nanoparticles to test organisms are discussed in this review. Further, a host of responses shown by algae like an increase in reactive oxygen species, lipid peroxidation and a decrease in chlorophyll content and photosynthetic efficiency are highlighted. Future scope of research is also discussed in brief.

Keywords

Algae Aggregation Lipid peroxidation Nanoecotoxicology ROS Toxicity 

Abbreviations

Al2O3

Aluminium oxide

CEC

Cation exchange capacity

CeO2

Cerium dioxide

CGPs

Cyanophycin grana proteins

CuO

Copper oxide

EC

Effect concentration

IC

Inhibitory concentration

ISO

International Organisation for Standardization

LDH

Lactate dehydrogenase

MDA

Malondiadlehyde

NiO

Nickel oxide

NOAEL

No observed adverse effect level

NOM

Natural organic matter

NPs

Nanoparticles

OECD

Organisation for Economic Co-operation and Development

PAMAM

Polyamidoamine dendrimers

PNEC

Predicted no effects concentrations

ROS

Reactive oxygen species

SiO2

Silica oxide

SRFA

Suwanee river fulvic acid

SRHA

Suwannee river humic acid

SSA

Specific surface area

TiO2

Titanium dioxide

UVA/B

Ultraviolet A/B

ZnO

Zinc oxide

Notes

Funding

Contribution of Pallavi Saxena to this study was financially supported by the University Grants Commission (UGC), New Delhi, India, in the form of BSR meritorious fellowship [F.25-a/2013-14(BSR)/7-125/2007(BSR)]. Harish received financial support from UGC, New Delhi, India, in the form of Start-up Grant Project [F.20-11(21)/2012(BSR)].

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Roco MC. Broader societal issues of nanotechnology. J Nanopart Res. 2003;5(3–4):181–9.CrossRefGoogle Scholar
  2. 2.
    Kahru A, Ivask A. Mapping the dawn of nanoecotoxicological research. Acc Chem Res. 2012;46(3):823–33.  https://doi.org/10.1021/ar3000212.CrossRefGoogle Scholar
  3. 3.
    Batley GE, Kirby JK, McLaughlin MJ. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res. 2012;46(3):854–62.  https://doi.org/10.1021/ar2003368.CrossRefGoogle Scholar
  4. 4.
    Gottschalk F, Sun T, Nowack B. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut. 2013;181:287–300.CrossRefGoogle Scholar
  5. 5.
    Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46(4):2242–50.CrossRefGoogle Scholar
  6. 6.
    Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int. 2006;13:225–32.CrossRefGoogle Scholar
  7. 7.
    Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett. 2007;171(3):99–110.  https://doi.org/10.1016/j.toxlet.2007.04.008.CrossRefGoogle Scholar
  8. 8.
    Nicolas M, Séverine LM, Anne BN, Pascal P. Effect of two TiO2 nanoparticles on the growth of unicellular green algae using the OECD 201 test guideline: influence of the exposure system. Toxicol Environ Chem. 2016;98(8):860–76.CrossRefGoogle Scholar
  9. 9.
    Metzler DM, Li M, Erdem A, Huang CP. Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chem Eng J. 2011;170(2):538–46.CrossRefGoogle Scholar
  10. 10.
    Ji J, Long Z, Lin D. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J. 2011;170:525–30.CrossRefGoogle Scholar
  11. 11.
    Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, et al. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat Toxicol. 2015;161:154–69.  https://doi.org/10.1016/j.aquatox.2015.02.006.CrossRefGoogle Scholar
  12. 12.
    Okupnik A, Contardo-Jara V, Pflugmacher S. Potential role of engineered nanoparticles as contaminant carriers in aquatic ecosystems: estimating sorption processes of the cyanobacterial toxin microcystin-LR by TiO2 nanoparticles. Colloids Surf A Physicochem Eng Asp. 2015;481:460–7.CrossRefGoogle Scholar
  13. 13.
    Chen L, Zhou L, Liu Y, Deng S, Wu H, Wang G. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf. 2012;84:155–62.  https://doi.org/10.1016/j.ecoenv.2012.07.019.CrossRefGoogle Scholar
  14. 14.
    Cherchi C, Gu AZ. Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol. 2010;44:8302–7.  https://doi.org/10.1021/es101658p.CrossRefGoogle Scholar
  15. 15.
    Cherchi C, Chernenko T, Diem M, Gu AZ. Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem. 2011;30(4):861–9.  https://doi.org/10.1002/etc.445.CrossRefGoogle Scholar
  16. 16.
    Sharma VK. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009;44(14):1485–95.  https://doi.org/10.1080/10934520903263231.CrossRefGoogle Scholar
  17. 17.
    Aruoja V, Dubourguier HC, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ. 2009;407:1461–8.  https://doi.org/10.1016/j.scitotenv.2008.10.053.CrossRefGoogle Scholar
  18. 18.
    Hund-Rinke K, Schlich K, Wenzel A. TiO2 nanoparticles—relationship between dispersion preparation method and ecotoxicity in the algal growth test. Umweltwiss Schadst Forsch. 2010;22:517–28.CrossRefGoogle Scholar
  19. 19.
    Dalai S, Pakrashi S, Bhuvaneshwari M, Iswarya V, Chandrasekaran N, Mukherjee A. Toxic effect of Cr (VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat Toxicol. 2014;146:28–37.  https://doi.org/10.1016/j.aquatox.2013.10.029.CrossRefGoogle Scholar
  20. 20.
    Lin D, Ji J, Long Z, Yang K, Wu F. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res. 2012;46(14):4477–87.  https://doi.org/10.1016/j.watres.2012.05.035.CrossRefGoogle Scholar
  21. 21.
    Roy R, Parashar A, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species. Aquat Toxicol. 2016;176:161–71.  https://doi.org/10.1016/j.aquatox.2016.04.021.CrossRefGoogle Scholar
  22. 22.
    Xia B, Chen B, Sun X, Qu K, Ma F, Du M. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: growth inhibition, oxidative stress and internalization. Sci Total Environ. 2015;508:525–33.  https://doi.org/10.1016/j.scitotenv.2014.11.066.CrossRefGoogle Scholar
  23. 23.
    Wang Y, Zhu X, Lao Y, Lv X, Tao Y, Huang B, et al. TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci Total Environ. 2016;565:818–26.  https://doi.org/10.1016/j.scitotenv.2016.03.164.CrossRefGoogle Scholar
  24. 24.
    Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R. Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res Int. 2016;23(3):2821–30.  https://doi.org/10.1007/s11356-015-5493-4.CrossRefGoogle Scholar
  25. 25.
    Minetto D, Libralato G, Marcomini A, Ghirardini AV. Potential effects of TiO2 nanoparticles and TiCl4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana. Sci Total Environ. 2017;579:1379–86.  https://doi.org/10.1016/j.scitotenv.2016.11.135.CrossRefGoogle Scholar
  26. 26.
    Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol. 2007;41(24):8484–90.CrossRefGoogle Scholar
  27. 27.
    Van Hoecke K, De Schamphelaere KA, Van der Meeren P, Lcucas S, Janssen CR. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem. 2008;27(9):1948–57.CrossRefGoogle Scholar
  28. 28.
    Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci. 2010;22(1):155–60.CrossRefGoogle Scholar
  29. 29.
    Van Hoecke K, Quik JTK, Mankiewicz-Boczek J, De Schamphelaere KAC, Elsaesser A, Vander Meeren P, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol. 2009;43:4537–46.CrossRefGoogle Scholar
  30. 30.
    Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, et al. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol. 2010;96(2):109–14.  https://doi.org/10.1016/j.aquatox.2009.10.002.CrossRefGoogle Scholar
  31. 31.
    Manzo S, Miglietta ML, Rametta G, Buono S, Francia GD. Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ. 2013;445-446:371–6.  https://doi.org/10.1016/j.scitotenv.2012.12.051.CrossRefGoogle Scholar
  32. 32.
    Van Hoecke K, De Schamphelaere KA, Ramirez-Garcia S, Van der Meeren P, Smagghe G, Janssen CR. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents. Environ Int. 2011;37(6):1118–25.  https://doi.org/10.1016/j.envint.2011.02.009.CrossRefGoogle Scholar
  33. 33.
    Peng X, Palma S, Fisher NS, Wong SS. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxico. 2011;102(3):186–96.  https://doi.org/10.1016/j.aquatox.2011.01.014.CrossRefGoogle Scholar
  34. 34.
    Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere. 2011;83(4):510–6.  https://doi.org/10.1016/j.chemosphere.2010.12.059.CrossRefGoogle Scholar
  35. 35.
    Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res. 2011;13:3287–99.CrossRefGoogle Scholar
  36. 36.
    Wang Z, Li J, Zhao J, Xing B. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol. 2011;45(14):6032–40.  https://doi.org/10.1021/es2010573.CrossRefGoogle Scholar
  37. 37.
    Gunawan C, Sirimanoonphan A, Teoh WY, Marquis CP, Amal R. Submicron and nanoformulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. J Hazard Mater. 2013;260:984–92.CrossRefGoogle Scholar
  38. 38.
    Lee WM, An YJ. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere. 2013;91(4):536–44.CrossRefGoogle Scholar
  39. 39.
    Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA. Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol. 2010;44(19):7329–34.  https://doi.org/10.1021/es100247x.CrossRefGoogle Scholar
  40. 40.
    Pakrashi S, Dalai S, Prathna TC, Trivedi S, Myneni R, Raichur AM, et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat Toxicol. 2013;132:34–45.  https://doi.org/10.1016/j.aquatox.2013.01.018.CrossRefGoogle Scholar
  41. 41.
    Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol. 2013;142:431–40.  https://doi.org/10.1016/j.aquatox.2013.09.015.CrossRefGoogle Scholar
  42. 42.
    Röhder LA, Brandt T, Sigg L, Behra R. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium (III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat Toxicol. 2014;152:121–30.  https://doi.org/10.1016/j.aquatox.2014.03.027.CrossRefGoogle Scholar
  43. 43.
    Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf. 2015;114:109–16.  https://doi.org/10.1016/j.ecoenv.2015.01.016.CrossRefGoogle Scholar
  44. 44.
    Müller E, Behra R, Sigg L. Toxicity of engineered copper (CuO) nanoparticles to the green alga Chlamydomonas reinhardtii. Envir Chem. 2016;13(3):457–63.Google Scholar
  45. 45.
    Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology. 2016;10(1):32–41.Google Scholar
  46. 46.
    Minetto D, Libralato G, Ghirardini AV. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview. Environ Int. 2014;66:18–27.  https://doi.org/10.1016/j.envint.2014.01.012.CrossRefGoogle Scholar
  47. 47.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol. 2009;43:9216–22.  https://doi.org/10.1021/es9015553.CrossRefGoogle Scholar
  48. 48.
    Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol. 2010;44(17):6532–49.  https://doi.org/10.1021/es100598h.CrossRefGoogle Scholar
  49. 49.
    Baalousha M. Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ. 2009;407:2093–101.  https://doi.org/10.1016/j.scitotenv.2008.11.022.CrossRefGoogle Scholar
  50. 50.
    Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol. 2010;44(6):1962–7.  https://doi.org/10.1021/es902987d.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Plant Biotechnology Laboratory, Department of BotanyMohanlal Sukhadia UniversityUdaipurIndia

Personalised recommendations