Skip to main content
Log in

Experimental investigation of nonlinear internal waves in deep water with miscible fluids

  • Research Article
  • Published:
Journal of Ocean Engineering and Marine Energy Aims and scope Submit manuscript

Abstract

Laboratory experimental results are presented for nonlinear internal solitary waves (ISW) propagation in ‘deep water’ configuration with miscible fluids. The results are validated against direct numerical simulations and traveling wave exact solutions where the effect of the diffused interface is taken into account. The waves are generated by means of a dam break and their evolution is recorded with laser-induced fluorescence and particle image velocimetry. In particular, data collected in a frame moving with the waves are presented here for the first time. Our results are representative of geophysical applications in the deep ocean where weakly nonlinear theories fail to capture the characteristics of large amplitude ISWs from field observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alford MH, Peacock T, MacKinnon JA, Nash JD, Buijsman MC, Centuroni Luca R, Chao S-Y, Chang M-H, Farmer DM, Fringer OB (2015) The formation and fate of internal waves in the South China sea. Nature 521(7550):65–69

    Article  Google Scholar 

  • Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML (1998) A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J Comput Phys 142(1):1–46

    Article  MathSciNet  Google Scholar 

  • Apel JR, Holbrook JR, Liu AK, Tsai JJ (1985) The Sulu sea internal soliton experiment. J Phys Oceanogr 15(12):1625–1651

    Article  Google Scholar 

  • Bell J, Berger M, Saltzman J, Welcome M (1994) Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J Sci Comput 15(1):127–138

    Article  MathSciNet  Google Scholar 

  • Benjamin TB (1986) On the boussinesq model for two-dimensional wave motions in heterogeneous fluids. J Fluid Mech 165:445–474

    Article  MathSciNet  Google Scholar 

  • Bourgault D, Galbraith PS, Chavanne C (2016) Generation of internal solitary waves by frontally forced intrusions in geophysical flows. Nat Commun 7:13606

    Article  Google Scholar 

  • Brandt P, Rubino A, Fischer J (2002) Large-amplitude internal solitary waves in the north equatorial countercurrent. J Phys Oceanogr 32(5):1567–1573

    Article  Google Scholar 

  • Camassa R, Tiron R (2011) Optimal two-layer approximation for continuously density stratification. J Fluid Mech 669:32–54

    Article  MathSciNet  Google Scholar 

  • Camassa R, Viotti C (2012) On the response of large-amplitude internal waves to upstream disturbances. J Fluid Mech 702:59–88

    Article  MathSciNet  Google Scholar 

  • Camassa R, Choi W, Michallet H, Rusås P-O, Seven JK (2006) On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J Fluid Mech 549:1–23

    Article  MathSciNet  Google Scholar 

  • Carr M, Davies PA (2010) Boundary layer flow beneath an internal solitary wave of elevation. Phys Fluids 22(2):026601

    Article  Google Scholar 

  • Carr M, Fructus D, Grue J, Jensen A, Davies PA (2008) Convectively induced shear instability in large amplitude internal solitary waves. Phys Fluids 20(12):126601

    Article  Google Scholar 

  • Carr M, King SE, Dritschel DG (2011) Numerical simulation of shear-induced instabilities in internal solitary waves. J Fluid Mech 683:263–288

    Article  MathSciNet  Google Scholar 

  • Carr M, Franklin J, King SE, Davies PA, Grue J, Dritschel DG (2017) The characteristics of billows generated by internal solitary waves. J Fluid Mech 812:541–577

    Article  MathSciNet  Google Scholar 

  • Choi W, Camassa R (1996) Long internal waves of finite amplitude. Phys Rev Lett 77(9):1759

    Article  Google Scholar 

  • Choi W, Camassa R (1999) Fully nonlinear internal waves in a two-fluid system. J Fluid Mech 396:1–36

    Article  MathSciNet  Google Scholar 

  • Churnside JH, Ostrovsky LA (2005) Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska. Int J Remote Sens 26(1):167–177

    Article  Google Scholar 

  • Davis RE, Acrivos A (1967) Solitary internal waves in deep water. J Fluid Mech 29(3):593–607

    Article  Google Scholar 

  • Dong J, Zhao W, Chen H, Meng Z, Shi X, Tian J (2015) Asymmetry of internal waves and its effects on the ecological environment observed in the northern South China sea. Deep Sea Res 98:94–101

    Article  Google Scholar 

  • Dubreil-Jacotin M-L (1934) Part I: Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. Part II: Suite de composition dans la théorie des groupes finis et abstraits et dans la théorie des idéaux de pôlynomes. Ph.D. thesis, École Normale Supérieur

  • Dubreil-Jacotin M-L (1933) Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. Comptes Rendus Mathematique Academie des Sciences 197:818

    MATH  Google Scholar 

  • Duda TF, Lynch JF, Irish JD, Beardsley RC, Ramp SR, Chiu C-S, Tang Tswen Y, Yang Y-J (2004) Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China sea. IEEE J Ocean Eng 29(4):1105–1130

    Article  Google Scholar 

  • Dunphy M, Subich C, Stastna M (2011) Spectral methods for internal waves: indistinguishable density profiles and double-humped solitary waves. Nonlinear Proc Geophys 18(3):351–358

    Article  Google Scholar 

  • Fructus D, Carr M, Grue J, Jensen A, Davies PA (2009) Shear-induced breaking of large internal solitary waves. J Fluid Mech 620:1–29

    Article  Google Scholar 

  • Grimshaw R (1981) Slowly varying solitary waves in deep fluids. Proc R Soc A 376:319–332

    Article  MathSciNet  Google Scholar 

  • Grimshaw R, Helfrich K (2012) The effect of rotation on internal solitary waves. IMA J Appl Math 77(3):326–339

    Article  MathSciNet  Google Scholar 

  • Grimshaw R, Pelinovsky E, Talipova T (2003) Damping of large-amplitude solitary waves. Wave Motion 37(4):351–364

    Article  MathSciNet  Google Scholar 

  • Grue J, Friis HA, Palm E, Rusås PO (1997) A method for computing unsteady fully nonlinear interfacial waves. J Fluid Mech 351:223–252

    Article  MathSciNet  Google Scholar 

  • Grue J, Jensen A, Rusås P-O, Sveen JK (1999) Properties of large-amplitude internal waves. J Fluid Mech 380:257–278

    Article  MathSciNet  Google Scholar 

  • Helfrich KR, Melville WK (2006) Long nonlinear internal waves. Annu Rev Fluid Mech 38:395–425

    Article  MathSciNet  Google Scholar 

  • Hosegood P, van Haren H (2006) Sub-inertial modulation of semi-diurnal currents over the continental slope in the faeroe-shetland channel. Deep Sea Res 53(4):627–655

    Article  Google Scholar 

  • Huang X, Chen Z, Zhao W, Zhang Z, Zhou C, Yang Q, Tian J (2016) An extreme internal solitary wave event observed in the northern South China sea. Sci Rep 6:30041

    Article  Google Scholar 

  • Johnston TMS, Rudnick DL, Kelly SM (2015) Standing internal tides in the Tasman sea observed by gliders. J Phys Oceanogr 45(11):2715–2737

    Article  Google Scholar 

  • Kalisch H, Bona JL (2000) Models for internal waves in deep water. Discrete Contin Dyn Syst 6(1):1–20

    Article  MathSciNet  Google Scholar 

  • Kodaira T, Waseda T, Miyata M, Choi W (2016) Internal solitary waves in a two-fluid system with a free surface. J Fluid Mech 804:201–223

    Article  MathSciNet  Google Scholar 

  • Koop CG, Butler G (1981) An investigation of internal solitary waves in a two-fluid system. J Fluid Mech 112:225–251

    Article  MathSciNet  Google Scholar 

  • Korteweg DJ, De Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond Edinb Dublin Philos Mag J Sci 39(240):422–443

    Article  MathSciNet  Google Scholar 

  • Kubota T, Ko DRS, Dobbs LD (1978) Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth. AIAA J Hydronaut 12(4):157–165

    Article  Google Scholar 

  • Lamb KG (2014) Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Ann Rev Fluid Mech 46:231–254

    Article  MathSciNet  Google Scholar 

  • Lien R-C, DAsaro EA, Henyey F, Chang M-H, Tang T-Y, Yang Y-J (2012) Trapped core formation within a shoaling nonlinear internal wave. J Phys Oceanogr 42(4):511–525

    Article  Google Scholar 

  • Lien R-C, Henyey F, Ma B, Yang YJ (2014) Large-amplitude internal solitary waves observed in the northern South China sea: properties and energetics. J Phys Oceanogr 44(4):1095–1115

    Article  Google Scholar 

  • Liu AK, Holbrook JR, Apel JR (1985) Nonlinear internal wave evolution in the Sulu sea. J Phys Oceanogr 15(12):1613–1624

    Article  Google Scholar 

  • Liu AK, Ramp SR, Zhao Y, Tang TY (2004) A case study of internal solitary wave propagation during ASIAEX 2001. IEEE J Ocean Eng 29(4):1144–1156

    Article  Google Scholar 

  • Long RR (1953) Some aspects of the flow of stratified fluids: I. A theoretical investigation. Tellus 5(1):42–58

    Article  MathSciNet  Google Scholar 

  • Luzzatto-Fegiz P, Helfrich KR (2014) Laboratory experiments and simulations for solitary internal waves with trapped cores. J Fluid Mech 757:354–380

    Article  MathSciNet  Google Scholar 

  • Meunier P, Leweke T (2003) Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp Fluids 35(5):408–421

    Article  Google Scholar 

  • Michallet H, Barthélemy E (1998) Experimental study of interfacial solitary waves. J Fluid Mech 366:159–177

    Article  Google Scholar 

  • Moum JN, Farmer DM, Smyth WD, Armi L, Vagle S (2003) Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J Phys Oceanogr 33(10):2093–2112

    Article  Google Scholar 

  • Passaggia P-Y, Leweke T, Ehrenstein U (2012) Transverse instability and low-frequency flapping in incompressible separated boundary layer flows: an experimental study. J Fluid Mech 703:363–373

    Article  Google Scholar 

  • Passaggia P-Y, Helfrich KR, White BL (2018) Optimal transient growth in thin-interface internal solitary waves. J Fluid Mech 840:342–378

    Article  MathSciNet  Google Scholar 

  • Pinkel R (1979) Observations of strongly nonlinear internal motion in the open sea using a range-gated Doppler sonar. J Phys Oceanogr 9(4):675–686

    Article  Google Scholar 

  • Preusse M, Stastna M, Freistühler H, Peeters F (2012) Intrinsic breaking of internal solitary waves in a deep lake. PLoS One 7(7):e41674

    Article  Google Scholar 

  • Preusse M, Freistühler H, Peeters F (2012a) Seasonal variation of solitary wave properties in lake constance. J Geophys Res Oceans 117(C4)

    Article  Google Scholar 

  • Ramp SR, Tang TY, Duda TF, Lynch JF, Liu AK, Chiu C-S, Bahr FL, Kim H-R, Yang Y-J (2004) Internal solitons in the northeastern South China sea. Part I: sources and deep water propagation. IEEE. J Ocean Eng 29(4):1157–1181

    Article  Google Scholar 

  • Rudnick DL, Boyd TJ, Brainard RE, Carter GS, Egbert GD, Gregg MC, Holloway PE, Klymak JM, Kunze E, Lee CM (2003) From tides to mixing along the Hawaiian ridge. Science 301(5631):355–357

    Article  Google Scholar 

  • Sadek MM, Parras L, Diamessis PJ, Liu PL-F (2015) Two-dimensional instability of the bottom boundary layer under a solitary wave. Phys Fluids 27(4):044101

    Article  Google Scholar 

  • Simmons HL, Alford MH (2012) Simulating the long-range swell of internal waves generated by ocean storms. Oceanography 25(2):30–41

    Article  Google Scholar 

  • Stanton TP, Ostrovsky LA (1998) Observations of highly nonlinear internal solitons over the continental shelf. Geophys Res Lett 25:2695–2698

    Article  Google Scholar 

  • Stastna M, Lamb KG (2002) Large fully nonlinear internal solitary waves: the effect of background current. Phys Fluids 14(9):2987–2999

    Article  MathSciNet  Google Scholar 

  • van Haren H (2013) Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions. J Fluid Mech 714:591–611

    Article  MathSciNet  Google Scholar 

  • Vasiliy Vlasenko, Peter Brandt, Angelo Rubino (2000) Structure of large-amplitude internal solitary waves. J Phys Oceanogr 30(9):2172–2185

    Article  MathSciNet  Google Scholar 

  • Xie J, He Y, Chen Z, Xu J, Cai S (2015) Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China sea. J Phys Oceanogr 45(12):2959–2978

    Article  Google Scholar 

  • Zhang S, Alford MH (2015) Instabilities in nonlinear internal waves on the Washington continental shelf. J Geophys Res 120(7):5272–5283

    Article  Google Scholar 

  • Zhao BB, Ertekin RC, Duan WY, Webster WC (2016) New internal-wave model in a two-layer fluid. J Waterw Port Coast Ocean Eng 142:04015022

    Article  Google Scholar 

Download references

Acknowledgements

RC, RMM, and CT thank David Adalsteinsson for helpful comments on the post-processing of the numerical results using DataTank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-Y. Passaggia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RC, RMM, and CT acknowledge the support by the National Science Foundation under grants RTG DMS-0943851, CMG ARC-1025523, DMS-1009750, DMS-1517879, and DURIP N00014-12-1-0749. PYP acknowledges the support by the National Science Foundation under grant NSF OCE-1155558 and NSF OCE-1736989.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camassa, R., Hurley, M.W., McLaughlin, R.M. et al. Experimental investigation of nonlinear internal waves in deep water with miscible fluids. J. Ocean Eng. Mar. Energy 4, 243–257 (2018). https://doi.org/10.1007/s40722-018-0119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40722-018-0119-9

Keywords

Navigation