Skip to main content
Log in

Prosthetic Limb Design and Function: Latest Innovations and Functional Results

  • Amputations: From Injury To Rehabilitation (P Giannoudis, Section Editor)
  • Published:
Current Trauma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We review the latest innovations and functional results in prosthetic limb design and function.

Recent Findings

Bionic prostheses, computer-aided design software applications, 3D scanners, automated carving machines, are recent innovations in limb designs.

Summary

Recent advances in the development of bionic prostheses, computer-aided design software applications, 3D scanners, automated carving machines, as well as the development of measuring and alignment devices that allow us the placement, orientation, adjustment, and adaptation of prosthesis to the particular conditions of the user, in a biomechanically correct manner, have meant a definitive leap towards an improvement in the quality of life. The application of new technologies such as 3D printing is proposed as an alternative to reduce costs. We discuss here both the current advances in bioelectric prostheses, their benefits and advantages, and the applications of 3DP in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ziegler-Graham K, MacKenzie EJ, Epharaim PL, Travison TG, Brookmeyer R. Estimation the prevalence of limb loss in the United States: 2005–2050. Arch Phys Med Rehabil. 2008;89:422–9.

    Article  Google Scholar 

  2. Jiménez S, Rubio JA, Álvarez J, Ruiz-Grande F, Medina C. Trends in the incidence of lower limb amputation after implementation of a multidisciplinary diabetic foot unit. Endocrinol Diabetes Nutr. 2017;64(4):188–97 Article in Spanish.

    Article  Google Scholar 

  3. Narres M, Kvitkina T, Claessen H, Droste S, Schuster B, Morbach S, et al. Incidence of lower extremity amputations in the diabetic compared with the non-diabetic population: a systematic review. PLoS One. 2017;28:1–28.

    Google Scholar 

  4. World Health Organization. Guidelines for training personnel in developing countries for prosthetics and orthotics services. Geneva: World Health Organization; 2005.

    Google Scholar 

  5. http://www.who.int/medical_devices/publications/guide_prosthe_ortho_train/en/. Accessed July 2018.

  6. •• Organización Mundial de la Salud (OMS). Normas de Ortoprotésica. 2017. http://www.who.int/iris/handle/10665/259508. Accessed July 2018. A document that collects standards and an application manual to improve access to affordable and high quality ortoprothesic services.

  7. Gonzales R. Global amputation statistics. LIMBS International. Available alt: https://www.limbsinternational.org. Accessed April 19, 2015.

  8. Biddis E, Chau T. Upper limb prosthesis user abandonment a survey of the last 25 years. Prosthetics Orthot Int. 2007;31:236–57.

    Article  Google Scholar 

  9. Silva K, Rand S, Cancel D, Chen Y, Kathirithamby R, Stern M. Three-dimensional (3-D) printing: a cost-effective solution for improving global accessibility to prostheses. PM R. 2015;7:1312–4.

    Article  Google Scholar 

  10. Lunsford C, Grndle G, Salatin B, Dicianno BE. Innovations with 3-D dimensional printing in physical medicine and rehabilitation: a review of the literature. PM R. 2016;8:1201–12.

    Article  Google Scholar 

  11. Zambudio Periago R. Prótesis, ortesis y ayudas técnicas. Barcelona: Elsevier; 2009.

    Google Scholar 

  12. Amici C, Borboni A, Taveggia G, Legnani G. Bioelectric prostheses: review of classification and control strategies. G Ital Med Lav Ergon. 2015;37(Suppl):39–44.

    PubMed  Google Scholar 

  13. •• Pasquina PF, Perry BN, Miller ME, GSF L, Tsao JW. Recent advances in bioelectric prostheses. Neurol Clin Pract. 2015;5:164–70 This article describes the current advances in bionic orthoprostheses and also the recent research studies in this area.

    Article  Google Scholar 

  14. Radmand A, Erik S, Englehart K. High-density force myography: a possible alternative for upper-limb prosthetic control. J Rehabil Res Dev. 2016;53(4):p443–56.

    Article  Google Scholar 

  15. Vallabbaneni A, Wang T, He B. Brain-computer interface. In: He B, editor. Neural engineering. New York: Springer US; 2005. p. 85–12.

    Chapter  Google Scholar 

  16. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst. 2005;10:229–58.

    Article  Google Scholar 

  17. Ten Kate J, Smit G, Breedveld P. 3D-printed upper limb prostheses: a review. Disabil Rehabil Assit Technol. 2017;12:300–14.

    Article  Google Scholar 

  18. Seminati E, Talamas DC, Young M, Twiste M, Dhokia V, Bilzon JLI. Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees residual limb models. PLoS One. 2017;12(9):e0184498. https://doi.org/10.1371/journal.pone.0184498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gailey R, Allen K, Castles J, Kucharik J, Roedre M. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. JRRD. 2008;45:15–30.

    Article  Google Scholar 

  20. Sawers AB, Hafner BJ. Outcomes associated with the use of microprocessor-controlled prosthetic knees among individuals with unilateral transfemoral limb loss: a systematic review. J Rehabil Res Dev. 2013;50:273–4.

    Article  Google Scholar 

  21. Kannenberg A, Zacharis B, Pröbsting E. Benefits of microprocessor-controlled prosthetic knees to limited community ambulator: systematic review. J Rehabil Dev. 2014;51:1469–96.

    Article  Google Scholar 

  22. • Hebert JS, Rehani M, Stiegelmar R. Osseointegración for lower-limb amputation. JBJS Rev. 2017;5(10):e10 The above reference reviews the literature on studies focused on clinical outcomes, evolution and complications of osseointegrated lower limb orthoprostheses.

    Article  Google Scholar 

  23. Mastinu E, Member S, Ortiz-Catalan M, Hakansson B. Digital controller for artificial limbs fed by implanted neuromuscular interfaces via osseointegration. Proceedings of the38th annual international conference of the IEE engineering in medicine and biology society. Orlando. 2016:16–20.

  24. Shelton TJ, Peter Bexk J, Bloebaum RD, Bachus Kent N. Percutaneous osseointegrated prostheses for limb compensation in a 12-month ovine model. J Biomech. 2011;44:2601–6.

    Article  Google Scholar 

  25. Jeyapalina S, Beck JP, Bachus KN, Williams DL, Bloebaum RD. Efficacy of a porous-structured titanium subdermal barrier for preventing infection in percutaneous osseointegrated prostheses. J Orthop Res. 2012;30:1304–11.

    Article  CAS  Google Scholar 

  26. Jeyapalina S, Beck JP, Bachus KN, Chalayon O, Bloebaum RD. Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model. Clin Orthop Relat Res. 2014;472:2966–77.

    Article  Google Scholar 

  27. Brånemark R, Berlin O, Hagberg K, Bergh P, Gunterberg B, Rydevik B. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J. 2014;96-B:106–13.

    Article  Google Scholar 

  28. Haggstrom EE, Hansson E, Hagberg K. Comparison of prosthetic costs and service between osseointegrated and conventional suspended transfemoral prostheses. Prosthetics Orthot Int. 2013;37:152–60.

    Article  Google Scholar 

  29. Tsikandylakis G, Berlin Ö, Brånemark R. Implant survival, adverse events, and bone remodeling of osseointegrated percutaneous implants for transhumeral amputees. Clin Orthop Relat Res. 2014;472:2947–56.

    Article  Google Scholar 

  30. Hagberg K, Brånemark R. One hundred patients treated with osseointegrated transfemoral amputation prostheses--rehabilitation perspective. J Rehabil Res Dev. 2009;46:331–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Román-Casares.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Amputations: From Injury To Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román-Casares, A.M., García-Gómez, O. & Guerado, E. Prosthetic Limb Design and Function: Latest Innovations and Functional Results. Curr Trauma Rep 4, 256–262 (2018). https://doi.org/10.1007/s40719-018-0150-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40719-018-0150-2

Keywords

Navigation