Prospects for the Use of Electrooxidation and Electrocoagulation Techniques for Membrane Filtration of Irrigation Water

Abstract

The problem of water insufficiency within the agriculture sector creates the need to create new strategies to optimize the use of this resource to the maximum. The purpose of this study was to evaluate if the use of membrane technology and the application of electrochemical techniques can be a viable strategy to create a system to achieve the continuous reuse of irrigation water in closed agricultural production systems. From an extensive review carried out, it was determined that the conventional treatment methods used in closed agricultural systems have considerable limitations since they cannot produce high purity water, which is a mandatory requirement for such systems. Because of this, membrane technology was selected as the basis for our proposal in this study, since it is widely used to generate potable water and to treat wastewater. Membrane fouling by natural organic matter (NOM) was identified as the main limitation of this technology. On this basis, the most effective technologies to solve this problem were sought and evaluated. The application of electrochemical techniques like electrooxidation, electrocoagulation, and the use of electroconductive membranes modified by nanomaterials, were found to be the most feasible means. From the analysis of the mechanisms of action of these technologies, we deduce that the application of electrocoagulation techniques adapted to electroconductive membranes which can carry out electrooxidation processes, could achieve a significant decrease in NOM. This would reduce the fouling problem considerably, optimizing irrigation water treatment systems to allow the reuse of water.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abid HS, Johnson DJ, Clifford B, Gehin DT, Bertoncello P, Hashaikeh R, Hilal N (2018) Periodic electrolysis technique for in situ fouling control and removal with low-pressure membrane filtration. Desalination 433:10–24. https://doi.org/10.1016/j.desal.2018.01.019

    Article  Google Scholar 

  2. Ahmed F, Lalia BS, Kochkodan V, Hilal N, Hashaikeh R (2016) Electrically conductive polymeric membranes for fouling prevention and detection: a review. Desalination 391:1–15. https://doi.org/10.1016/j.desal.2016.01.030

    Article  Google Scholar 

  3. Al Jabri SA, Zekri S, Zarzoc D, Ahmed M (2019) Comparative analysis of economic and institutional aspects of desalination for agriculture in the sultanate of Oman and Spain. Desalin Water Treat 156:1–6. https://doi.org/10.5004/dwt.2019.24066

    Article  Google Scholar 

  4. Ali S, Rehman SAU, Luan HY, Farid MU, Huang H (2019) Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Sci Total Environ 646:1126–1139. https://doi.org/10.1016/j.scitotenv.2018.07.348

    Article  Google Scholar 

  5. Alshrouf A (2017) Hydroponics, Aeroponic and Aquaponic as compared with conventional farming. Am Sci Res J Eng Technol Sci 27:247–255

    Google Scholar 

  6. Amour A, Merzouk B, Leclerc JP, Lapicque F (2016) Removal of reactive textile dye from aqueous solutions by electrocoagulation in a continuous cell. Desalin Water Treat 57:22764–22773. https://doi.org/10.1080/19443994.2015.1106094

    Article  Google Scholar 

  7. Ayers R., Westcot D. (1985) Water quality for agriculture. FAO irrigation and drainage paper 29 (rev. 1). Rome, Italy

  8. Azarian GH, Mesdaghinia AR, Vaezi F, Nabizadeh R, Nematollahi D (2007) Algae removal by electro-coagulation process application for treatment of the effluent from an industrial wastewater treatment plant. Iran J Public Health 36:57–64

    Google Scholar 

  9. Bandte M, Rodriguez MH, Schuch I, Buettner C (2016) Plant viruses in irrigation water: reduced dispersal of viruses using sensor-based disinfection. Irrig Sci 34:221–229. https://doi.org/10.1007/s00271-016-0500-1

    Article  Google Scholar 

  10. Barbosa GL, Almeida Gadelha FD, Kublik N, Proctor A, Reichelm L, Weissinger E, Wohlleb GM, Halden RU (2015) Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int J Environ Res Public Health 12:6879–6891. https://doi.org/10.3390/ijerph120606879

    Article  Google Scholar 

  11. Bason S, Oren Y, Freger V (2007) Characterization of ion transport in thin films using electrochemical impedance spectroscopy. II: Examination of the polyamide layer of RO membranes J Memb Sci 302:10–19. https://doi.org/10.1016/j.memsci.2007.05.007

    Article  Google Scholar 

  12. Bazrafshan E, Mohammadi L, Ansari-Moghaddam A, Mahvi AH (2015) Heavy metals removal from aqueous environments by electrocoagulation process - a systematic review. J Environ Heal Sci Eng 13:74. https://doi.org/10.1186/s40201-015-0233-8

    Article  Google Scholar 

  13. Benaissa F, Kermet-Said H, Moulai-Mostefa N (2016) Optimization and kinetic modeling of electrocoagulation treatment of dairy wastewater. Desalin Water Treat 57:5988–5994. https://doi.org/10.1080/19443994.2014.985722

    Article  Google Scholar 

  14. Bensadok K, El Hanafi N, Lapicque F (2011) Electrochemical treatment of dairy effluent using combined Al and Ti/Pt electrodes system. Desalination 280:244–251. https://doi.org/10.1016/j.desal.2011.07.006

    Article  Google Scholar 

  15. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663. https://doi.org/10.1021/ie8019032

    Article  Google Scholar 

  16. Bhatnagar R, Joshi H, Mall ID, Srivastava VC (2014) Electrochemical oxidation of textile industry wastewater by graphite electrodes. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 49:955–966. https://doi.org/10.1080/10934529.2014.894320

    Article  Google Scholar 

  17. Birnhack L, Lahav O (2018) Post-Treatment of Desalinated Water—Chemistry, Design, Engineering, and Implementation. In: Post-treatment of desalinated water-chemistry, design, engineering, and implementation. Elsevier Inc.

  18. Bixio D, Thoeye C, De Koning J, Joksimovic D, Savic D, Wintgens T, Melin T (2006) Wastewater reuse in Europe. Desalination 187:89–101. https://doi.org/10.1016/j.desal.2005.04.070

    Article  Google Scholar 

  19. Bunani S, Yörükoğlu E, Yüksel Ü, Kabay N, Yüksel M, Sert G (2015) Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation. Desalination 364:68–74. https://doi.org/10.1016/j.desal.2014.07.030

    Article  Google Scholar 

  20. Butler E, Hung Y, Yeh RY, Suleiman AM (2011) Electrocoagulation in wastewater treatment. 495–525. https://doi.org/10.3390/w3020495

  21. Camcioglu S, Ozyurt B, Hapoglu H (2017) Effect of process control on optimization of pulp and paper mill wastewater treatment by electrocoagulation. Process Saf Environ Prot 111:300–319. https://doi.org/10.1016/j.psep.2017.07.014

    Article  Google Scholar 

  22. Candia-Onfray C, Espinoza N, Sabino da Silva EB, Toledo-Neira C, Espinoza LC, Santander R, García V, Salazar R (2018) Treatment of winery wastewater by anodic oxidation using BDD electrode. Chemosphere 206:709–717. https://doi.org/10.1016/j.chemosphere.2018.04.175

    Article  Google Scholar 

  23. Cavalcanti EB, Garcia-Segura S, Centellas F, Brillas E (2013) Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products. Water Res 47:1803–1815. https://doi.org/10.1016/j.watres.2013.01.002

    Article  Google Scholar 

  24. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41. https://doi.org/10.1016/j.seppur.2003.10.006

    Article  Google Scholar 

  25. Chin SS, Chiang K, Fane AG (2006) The stability of polymeric membranes in a TiO2 photocatalysis process. J Memb Sci 275:202–211. https://doi.org/10.1016/j.memsci.2005.09.033

    Article  Google Scholar 

  26. Chiu TY, Garcia Garcia FJ (2011) Critical flux enhancement in electrically assisted microfiltration. Sep Purif Technol 78:62–68. https://doi.org/10.1016/j.seppur.2011.01.021

    Article  Google Scholar 

  27. Cho WJ, Kim HJ, Jung DH, Kim D, Ahn TI, Son JE (2018) On-site ion monitoring system for precision hydroponic nutrient management. Comput Electron Agric 146:51–58. https://doi.org/10.1016/j.compag.2018.01.019

    Article  Google Scholar 

  28. Chu J, Chen J, Wang C, Fu P (2004) Wastewater reuse potential analysis: implications for China’s water resources management. Water Res 38:2746–2756. https://doi.org/10.1016/j.watres.2004.04.002

    Article  Google Scholar 

  29. Crook J, Ammerman DK, Okun DA, Matthews RL (1996) Water reclamation and reuse criteria in the U.S. water Sci Technol 33. https://doi.org/10.1016/0273-1223(96)00448-9

  30. Cui X, Choo KH (2014) Natural organic matter removal and fouling control in low-pressure membrane filtration for water treatment. Environ Eng Res 19:1–8. https://doi.org/10.4491/eer.2014.19.1.001

    Article  Google Scholar 

  31. Czyzyk KA, Bement ST, Dawson WF, Mehta K (2014) Quantifying water savings with greenhouse farming. Proc 4th IEEE glob Humanit Technol Conf GHTC 2014 325–332. https://doi.org/10.1109/GHTC.2014.6970300

  32. Dai L (2004) Conducting polymers. In: Springer (ed) intelligent macromolecules for smart devices. Springer-Verlag, London, pp 41–80

    Google Scholar 

  33. Das R, Abd Hamid SB, Ali ME, Ismail AF, Annuar MSM, Ramakrishna S (2014a) Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354:160–179. https://doi.org/10.1016/j.desal.2014.09.032

    Article  Google Scholar 

  34. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014b) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109. https://doi.org/10.1016/j.desal.2013.12.026

    Article  Google Scholar 

  35. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications - supplemental information. Science (80- ) 339:535–539. https://doi.org/10.1126/science.1222453

  36. Demir Delil A, Gören N (2019) Investigation of electrocoagulation and Electrooxidation methods of real textile wastewater treatment. Anadolu Univ J Sci Technol Appl Sci Eng 20:80–91. Doi: https://doi.org/10.18038/aubtda.445716

  37. Ercin AE, Hoekstra AY (2014) Water footprint scenarios for 2050: a global analysis. Environ Int 64:71–82. https://doi.org/10.1016/j.envint.2013.11.019

    Article  Google Scholar 

  38. Esfandyari Y, Mahdavi Y, Seyedsalehi M, Hoseini M, Safari GH, Ghosikali M, Ghanbari KH, Kamani H, Jaafari J (2015) Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes. Environ Sci Pollut Res 22:6288–6297. https://doi.org/10.1007/s11356-014-3832-5

    Article  Google Scholar 

  39. Fan X, Zhao H, Liu Y, Quan X, Yu H, Chen S (2015) Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance. Environ Sci Technol 49:2293–2300. https://doi.org/10.1021/es5039479

    Article  Google Scholar 

  40. Fathizadeh M, Aroujalian A, Raisi A (2012) Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers. Desalination 284:32–41. https://doi.org/10.1016/j.desal.2011.08.034

    Article  Google Scholar 

  41. Formoso P, Pantuso E, De Filpo G, Nicoletta FP (2017) Electro-conductive membranes for permeation enhancement and fouling mitigation: a short review. Membranes (Basel) 7. https://doi.org/10.3390/membranes7030039

  42. Garcia-Segura S, Keller J, Brillas E, Radjenovic J (2015) Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J Hazard Mater 283:551–557. https://doi.org/10.1016/j.jhazmat.2014.10.003

    Article  Google Scholar 

  43. Garcia-Segura S, Ocon JD, Chong MN (2018) Electrochemical oxidation remediation of real wastewater effluents — a review. Process Saf Environ Prot 113:48–67. https://doi.org/10.1016/j.psep.2017.09.014

    Article  Google Scholar 

  44. Ge Q, Su J, Chung TS, Amy G (2011) Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes. Ind Eng Chem Res 50:382–388. https://doi.org/10.1021/ie101013w

    Article  Google Scholar 

  45. De Gelder A, Dieleman JA, Bot GPA, Marcelis LFM, Dieleman JA, Bot GPA (2016) An overview of climate and crop yield in closed greenhouses. An overview of climate and crop yield in closed greenhouses 87:0316–0202. https://doi.org/10.1080/14620316.2012.11512852

    Article  Google Scholar 

  46. Ghasemian S, Asadishad B, Omanovic S, Tufenkji N (2017) Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes. Water Res 126:299–307. https://doi.org/10.1016/j.watres.2017.09.029

    Article  Google Scholar 

  47. Ghatak HR (2014) Comparative removal of commercial diclofenac sodium by electro-oxidation on platinum anode and combined electro-oxidation and electrocoagulation on stainless steel anode. Environ Technol (United Kingdom) 35:2483–2492. https://doi.org/10.1080/09593330.2014.911357

    Article  Google Scholar 

  48. Gönder ZB, Balcıoğlu G, Vergili I, Kaya Y (2017) Electrochemical treatment of carwash wastewater using Fe and Al electrode: techno-economic analysis and sludge characterization. J Environ Manag 200:380–390. https://doi.org/10.1016/j.jenvman.2017.06.005

    Article  Google Scholar 

  49. Gryta M (2008) Fouling in direct contact membrane distillation process. J Memb Sci 325:383–394. https://doi.org/10.1016/j.memsci.2008.08.001

    Article  Google Scholar 

  50. Guo W, Ngo HH, Li J (2012) A mini-review on membrane fouling. Bioresour Technol 122:27–34. https://doi.org/10.1016/j.biortech.2012.04.089

    Article  Google Scholar 

  51. Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling - an overview. RSC Adv 2:6380–6388. https://doi.org/10.1039/c2ra20340e

    Article  Google Scholar 

  52. Hakizimana JN, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P, Naja J (2017) Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches. Desalination 404:1–21. https://doi.org/10.1016/j.desal.2016.10.011

    Article  Google Scholar 

  53. Hamza M, Ammar S, Abdelhédi R (2011) Electrochemical oxidation of 1,3,5-trimethoxybenzene in aqueous solutions at gold oxide and lead dioxide electrodes. Electrochim Acta 56:3785–3789. https://doi.org/10.1016/j.electacta.2011.02.051

    Article  Google Scholar 

  54. Hanafi F, Assobhei O, Mountadar M (2010) Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation. J Hazard Mater 174:807–812. https://doi.org/10.1016/j.jhazmat.2009.09.124

    Article  Google Scholar 

  55. Ho JS, Low JH, Sim LN, Webster R, Rice S, Fane A, Coster H (2016) In-situ monitoring of biofouling on reverse osmosis membranes: detection and mechanistic study using electrical impedance spectroscopy. J Memb Sci 518:229–242. https://doi.org/10.1016/j.memsci.2016.06.043

    Article  Google Scholar 

  56. Hong CX, Moorman GW (2005) Plant pathogens in irrigation water: challenges and opportunities. CRC Crit Rev Plant Sci 24:189–208. https://doi.org/10.1080/07352680591005838

    Article  Google Scholar 

  57. Hosseinzadeh S, Liu Z, De Graeve J, BKheet M, Libbrecht W, De Clercq J, Van Hulle S (2019) Recirculating Water Treatment in Closed Hydroponic Systems: Assessment of Granular Activated Carbon and Soft Templated Mesoporous Carbon for Adsorptive Removal of Root Exudates Environ Process 6:. doi: https://doi.org/10.1007/s40710-019-00347-0, Recirculating Water Treatment in Closed Hydroponic Systems: Assessment of Granular Activated Carbon and Soft Templated Mesoporous Carbon for Adsorptive Removal of Root Exudates, 6, 23

  58. Isarain-Chávez E, De La Rosa C, Godínez LA, Brillas E, Peralta-Hernández JM (2014) Comparative study of electrochemical water treatment processes for a tannery wastewater effluent. J Electroanal Chem 713:62–69. https://doi.org/10.1016/j.jelechem.2013.11.016

    Article  Google Scholar 

  59. Jadav GL, Singh PS (2009) Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J Memb Sci 328:257–267. https://doi.org/10.1016/j.memsci.2008.12.014

    Article  Google Scholar 

  60. Jaramillo MF, Restrepo I (2017) Wastewater reuse in agriculture: a review about its limitations and benefits. Sustain 9. https://doi.org/10.3390/su9101734

  61. Jarusutthirak C, Amy G (2001) Membrane filtration of wastewater effluents for reuse: effluent organic matter rejection and fouling. Water Sci Technol 43:225–232. https://doi.org/10.2166/wst.2001.0627

    Article  Google Scholar 

  62. Jeong H, Kim H, Jang T (2016) Irrigation water quality standards for indirect wastewater reuse in agriculture: a contribution toward sustainablewastewater reuse in South Korea. Water (Switzerland) 8. https://doi.org/10.3390/w8040169

  63. Jiang G, Yang Y (2017) Preparation and tribology properties of water-soluble fullerene derivative nanoball. Arab J Chem 10:S870–S876. https://doi.org/10.1016/j.arabjc.2012.12.022

    Article  Google Scholar 

  64. Jimenez B, Asano T (2008) Water reuse: an international survey of current practice, issues and needs. Water Intell Online 7:9781780401881–9781780401881. https://doi.org/10.2166/9781780401881

    Article  Google Scholar 

  65. Jones E, Qadir M, van Vliet MTH, Smakhtin V, Kang S (2019) The state of desalination and brine production: a global outlook. Sci Total Environ 657:1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076

    Article  Google Scholar 

  66. Ju XT, Kou CL, Zhang FS, Christie P (2006) Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China plain. Environ Pollut 143:117–125. https://doi.org/10.1016/j.envpol.2005.11.005

    Article  Google Scholar 

  67. Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. Comptes Rendus Chim 6:999–1007. https://doi.org/10.1016/j.crci.2003.06.005

    Article  Google Scholar 

  68. Karkooti A, Rastgar M, Nazemifard N, Sadrzadeh M (2020) Graphene-based electro-conductive anti-fouling membranes for the treatment of oil sands produced water. Sci Total Environ 704:135365. https://doi.org/10.1016/j.scitotenv.2019.135365

    Article  Google Scholar 

  69. Keerthi VV, Balasubramanian N (2013) Electrocoagulation-integrated hybrid membrane processes for the treatment of tannery wastewater. Environ Sci Pollut Res 20:7441–7449. https://doi.org/10.1007/s11356-013-1766-y

    Article  Google Scholar 

  70. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109. https://doi.org/10.1039/c2ee21818f

    Article  Google Scholar 

  71. Kim JS, Kim TE, Han IS (2015) Phosphorus removal by a combined electrocoagulation and membrane filtration process for sewage reuse. Desalin Water Treat 54:956–965. https://doi.org/10.1080/19443994.2014.942701

    Article  Google Scholar 

  72. Körbahti BK, Demirbüken P (2017) Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology. Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology Front Chem 5:5. https://doi.org/10.3389/fchem.2017.00075

    Article  Google Scholar 

  73. Kul S, Boncukcuoʇlu R, Yilmaz AE, Fil BA (2015) Treatment of olive mill wastewater with electro-oxidation method. J Electrochem Soc 162:G41–G47. https://doi.org/10.1149/2.0451508jes

    Article  Google Scholar 

  74. Kulak MR, Liang RL (2018) Electrospun polymeric nanofibrous membranes for water treatment. 1–31. Doi: https://doi.org/10.31224/osf.io/gmp2h

  75. Lal R (2013) Climate-strategic agriculture and the water-soil-waste nexus. J Plant Nutr Soil Sci 176:479–493

    Article  Google Scholar 

  76. Lalia BS, Ahmed FE, Shah T, Hilal N, Hashaikeh R (2015) Electrically conductive membranes based on carbon nanostructures for self-cleaning of biofouling. Desalination 360:8–12. https://doi.org/10.1016/j.desal.2015.01.006

    Article  Google Scholar 

  77. Leonard DT, Yun Chul W, June-Seok C, Yun Chul W, June Seok C, Sangho L, Seung Hyun K, Ho Kyong S (2015) Fouling and its control in membrane distillation—a review. J Memb Sci 475:215–244. https://doi.org/10.1016/J.MEMSCI.2014.09.042

    Article  Google Scholar 

  78. Linares-Hernández I, Barrera-Díaz C, Bilyeu B, Juárez-GarcíaRojas P, Campos-Medina E (2010) A combined electrocoagulation-electrooxidation treatment for industrial wastewater. J Hazard Mater 175:688–694. https://doi.org/10.1016/j.jhazmat.2009.10.064

    Article  Google Scholar 

  79. Liu X, Wang J, Liu T, Kong W, He X, Jin Y, Zhang B (2015) Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water. PLoS One 10:1–11. https://doi.org/10.1371/journal.pone.0128825

    Article  Google Scholar 

  80. Ma H, Hsiao BS (2018) Current advances on nanofiber membranes for water purification applications. Filter Media by Electrospinning Next Gener Membr Sep Appl:25–46. https://doi.org/10.1007/978-3-319-78163-1_2

  81. Ma L, Dong X, Chen M, Zhu L, Wang C, Yang F, Dong Y (2017) Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes (Basel) 7. https://doi.org/10.3390/membranes7010016

  82. Ma P, Ma H, Sabatino S, Galia A, Scialdone O (2018) Electrochemical treatment of real wastewater. Part 1: effluents with low conductivity. Chem Eng J 336:133–140. https://doi.org/10.1016/j.cej.2017.11.046

    Article  Google Scholar 

  83. Mairal AP, Greenberg AR, Krantz WB (2000) Investigation of membrane fouling and cleaning using ultrasonic time-domain reflectometry. Desalination 130:45–60. https://doi.org/10.1016/S0011-9164(00)00073-4

    Article  Google Scholar 

  84. Mameda N, Park HJ, Choo KH (2017) Membrane electro-oxidizer: a new hybrid membrane system with electrochemical oxidation for enhanced organics and fouling control. Water Res 126:40–49. https://doi.org/10.1016/j.watres.2017.09.009

    Article  Google Scholar 

  85. Martínez-Alvarez V, Martin-Gorriz B, Soto-García M (2016) Seawater desalination for crop irrigation - a review of current experiences and revealed key issues. Desalination 381:58–70. https://doi.org/10.1016/j.desal.2015.11.032

    Article  Google Scholar 

  86. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340. https://doi.org/10.1039/b517632h

    Article  Google Scholar 

  87. Martínez-Huitle CA, Panizza M (2018) Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem 11:62–71. https://doi.org/10.1016/j.coelec.2018.07.010

    Article  Google Scholar 

  88. Metsämuuronen S, Sillanpää M, Bhatnagar A, Mänttäri M (2014) Natural organic matter removal from drinking water by membrane technology. Sep Purif Rev 43:1–61. https://doi.org/10.1080/15422119.2012.712080

    Article  Google Scholar 

  89. Mohamad SH, Idris MI, Abdullah HZ, Ismail AF (2013) Short Review of Ultrafiltration of Polymer Membrane As a Self-Cleaning and Antifouling in the Wastewater System 795:318–323. doi: https://doi.org/10.4028/www.scientific.net/AMR.795.318, Short Review of Ultrafiltration of Polymer Membrane as a Self-Cleaning and Antifouling in the Wastewater System

  90. Mostafazadeh AK, Zolfaghari M, Drogui P (2016) Electrofiltration technique for water and wastewater treatment and bio-products management: a review. J Water Process Eng 14:28–40. https://doi.org/10.1016/j.jwpe.2016.10.003

    Article  Google Scholar 

  91. Mulder M (1996) Basic principles of membrane technology. Springer Netherlands, Dordrecht

    Google Scholar 

  92. Naje AS, Chelliapan S, Zakaria Z, Abbas SA (2015) Enhancement of an electrocoagulation process for the treatment of textile wastewater under combined electrical connections using titanium plates. Int J Electrochem Sci 10:4495–4512

    Google Scholar 

  93. Nayar KG, Lienhard VJH (2020) Brackish water desalination for greenhouse agriculture: comparing the costs of RO, CCRO, EDR, and monovalent-selective EDR. Desalination 475:114188. https://doi.org/10.1016/j.desal.2019.114188

    Article  Google Scholar 

  94. Neoh CH, Noor ZZ, Mutamim NSA, Lim CK (2016) Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems. Chem Eng J 283:582–594. https://doi.org/10.1016/j.cej.2015.07.060

    Article  Google Scholar 

  95. Nishanthiny SC, Thushyanthy M, Barathithasan T, Saravanan S (2010) Irrigation water quality based on hydro chemical analysis, Jaffna, Sri Lanka. Am J Agric Environ Sci 7:100–102

    Google Scholar 

  96. Norton-Brandão D, Scherrenberg SM, van Lier JB (2013) Reclamation of used urban waters for irrigation purposes - a review of treatment technologies. J Environ Manag 122:85–98. https://doi.org/10.1016/j.jenvman.2013.03.012

    Article  Google Scholar 

  97. O’Connor N, Mehta K (2016) Modes of greenhouse water savings. Procedia Eng 159:259–266. https://doi.org/10.1016/j.proeng.2016.08.172

    Article  Google Scholar 

  98. Olaimat AN, Holley RA (2012) Factors influencing the microbial safety of fresh produce: a review. Food Microbiol 32:1–19. https://doi.org/10.1016/j.fm.2012.04.016

    Article  Google Scholar 

  99. Özyurt B, Camcıoğlu Ş (2018) Applications of combined electrocoagulation and Electrooxidation treatment to industrial wastewaters. Wastewater and Water Quality. InTech, In, pp 71–89

    Google Scholar 

  100. Özyurt B, Camcıoğlu Ş, Hapoglu H (2017) A consecutive electrocoagulation and electro-oxidation treatment for pulp and paper mill wastewater. Desalin Water Treat 93:214–228. https://doi.org/10.5004/dwt.2017.21257

    Article  Google Scholar 

  101. Pachepsky Y, Shelton DR, McLain JET, Patel J, Mandrel R (2011) Irrigation waters as a source of pathogenic microorganisms in produce. A review, 1st edn. Elsevier Inc.

  102. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013. https://doi.org/10.1021/es801777n

    Article  Google Scholar 

  103. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. https://doi.org/10.1021/cr9001319

    Article  Google Scholar 

  104. Priva, GRODA, Groen AgroControl (2016) Best Practice Guidelines for Greenhouse Water Management

  105. Raudales RE, Parke JL, Guy CL, Fisher PR (2014) Control of waterborne microbes in irrigation: a review. Agric Water Manag 143:9–28. https://doi.org/10.1016/j.agwat.2014.06.007

    Article  Google Scholar 

  106. Ruiz-Martinez A, Martin Garcia N, Romero I, Seco A, Ferrer J (2012) Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresour Technol 126:247–253. https://doi.org/10.1016/j.biortech.2012.09.022

    Article  Google Scholar 

  107. Runia WT (1995) A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hortic 221–229. Doi: https://doi.org/10.17660/ActaHortic.1995.382.25

  108. Särkkä H, Bhatnagar A, Sillanpää M (2015a) Recent developments of electro-oxidation in water treatment - a review. J Electroanal Chem 754:46–56. https://doi.org/10.1016/j.jelechem.2015.06.016

    Article  Google Scholar 

  109. Särkkä H, Vepsäläinen M, Sillanpää M (2015b) Natural organic matter (NOM) removal by electrochemical methods - a review. J Electroanal Chem 755:100–108. https://doi.org/10.1016/j.jelechem.2015.07.029

    Article  Google Scholar 

  110. Seader, Henley, Roper (2011) separation process principles. Chemical and biochemical operations, 3rd edn. John Wiley & Sons, Inc., Utah

  111. Shestakova M, Sillanpää M (2017) Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Rev Environ Sci Biotechnol 16:223–238. https://doi.org/10.1007/s11157-017-9426-1

    Article  Google Scholar 

  112. Soloman PA, Basha CA, Velan M, Balasubramanian N (2009) Electrochemical degradation of pulp and paper industry waste-water. J Chem Technol Biotechnol 84:1303–1313. https://doi.org/10.1002/jctb.2176

    Article  Google Scholar 

  113. Son DJ, Kim WY, Yun CY, Chang D, Kim JH, Sunwoo Y, Bae YS, Hong KH (2014) Combination of electrolysis technology with membrane for wastewater treatment in rural communities. Int J Electrochem Sci 9:4548–4557

    Google Scholar 

  114. Stewart-Wade SM (2011) Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrig Sci 29:267–297. https://doi.org/10.1007/s00271-011-0285-1

    Article  Google Scholar 

  115. Stöckl M, Schlegel C, Sydow A, Holtmann D, Ulber R, Mangold KM (2016) Membrane separated flow cell for parallelized electrochemical impedance spectroscopy and confocal laser scanning microscopy to characterize electro-active microorganisms. Electrochim Acta 220:444–452. https://doi.org/10.1016/j.electacta.2016.10.057

    Article  Google Scholar 

  116. Tarchitzky J, Tal A, Bar-Tal A, Lahav O, Ben-Gal A, Yermiyahu U (2007) Environmental science: rethinking desalinated water quality and agriculture. Science (80- ) 1–3. https://doi.org/10.1126/science.1146339

  117. Toze S (2006) Reuse of effluent water - benefits and risks. Agric Water Manag 80:147–159. https://doi.org/10.1016/j.agwat.2005.07.010

    Article  Google Scholar 

  118. Tran QK, Schwabe KA, Jassby D (2016) Wastewater reuse for agriculture : a development of a regional water reuse decision-support model ( RWRM ) for cost-effective irrigation sources wastewater reuse for agriculture : a development of a regional water reuse decision-support model ( RWRM ) for. doi: https://doi.org/10.1021/acs.est.6b02073

  119. Uemura T, Kotera K, Henmi M, Tomioka H (2011) Membrane technology in seawater desalination: history, recent developments and future prospects. Desalin Water Treat 33:283–288. https://doi.org/10.5004/dwt.2011.2646

    Article  Google Scholar 

  120. Ulu F, Barişçi S, Kobya M, Särkkä H, Sillanpää S (2014) Removal of humic substances by electrocoagulation (EC) process and characterization of floc size growth mechanism under optimum conditions. Sep Purif Technol 133:246–253. https://doi.org/10.1016/j.seppur.2014.07.003

    Article  Google Scholar 

  121. Van Der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22:46–56. https://doi.org/10.1002/ep.670220116

    Article  Google Scholar 

  122. Vepsäläinen M, Ghiasvand M, Selin J, Pienimaa J, Repo E, Pulliainen M, Sillanpää M (2009) Investigations of the effects of temperature and initial sample pH on natural organic matter (NOM) removal with electrocoagulation using response surface method (RSM). Sep Purif Technol 69:255–261. https://doi.org/10.1016/j.seppur.2009.08.001

    Article  Google Scholar 

  123. WHO, UNEP (2006) Safe use wastewater, excreta and greyewater. VOL1 policy and regulatory aspects

  124. Will E, Faust JE (2010) Irrigation water quality for greenhouse production. Univ Tennessee Agric Ext Serv PB 1617

  125. World Health Organization (2006) Excreta and Greywater in Agriculture. Guidel Safe Use Wastewater, Excreta, Greywater IV:204. doi: https://doi.org/10.1007/s13398-014-0173-7.2

  126. Wu W, Huang ZH, Lim TT (2014) Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl Catal A Gen 480:58–78. https://doi.org/10.1016/j.apcata.2014.04.035

    Article  Google Scholar 

  127. Xiu Z, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008. https://doi.org/10.1021/es201918f

    Article  Google Scholar 

  128. Yang GCC, Yang TY (2004) Reclamation of high quality water from treating CMP wastewater by a novel crossflow electrofiltration/electrodialysis process. J Memb Sci 233:151–159. https://doi.org/10.1016/j.memsci.2004.01.011

    Article  Google Scholar 

  129. Yavuz Y, Ögütveren B (2018) Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. J Environ Manag 207:151–158. https://doi.org/10.1016/j.jenvman.2017.11.034

    Article  Google Scholar 

  130. Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Colvin VL, Tomson MB (2005) Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res 20:3255–3264. https://doi.org/10.1557/jmr.2005.0403

    Article  Google Scholar 

  131. You HJ, Han IS (2016) Effects of dissolved ions and natural organic matter on electrocoagulation of as(III) in groundwater. J Environ Chem Eng 4:1008–1016. https://doi.org/10.1016/j.jece.2015.12.034

    Article  Google Scholar 

  132. Zhang N, Halali MA, de Lannoy CF (2020) Detection of fouling on electrically conductive membranes by electrical impedance spectroscopy. Sep Purif Technol 242:116823. https://doi.org/10.1016/j.seppur.2020.116823

    Article  Google Scholar 

  133. Zhang P, Zhao X, Zhang X, Lai Y, Wang X, Li J, Wei G, Su Z (2014) Electrospun doping of carbon nanotubes and platinum nanoparticles into the β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS Appl Mater Interfaces 6:7563–7571. https://doi.org/10.1021/am500908v

    Article  Google Scholar 

  134. Zhu R, Yang C, Zhou M, Wang J (2015) Industrial park wastewater deeply treated and reused by a novel electrochemical oxidation reactor. Chem Eng J 260:427–433. https://doi.org/10.1016/j.cej.2014.09.029

    Article  Google Scholar 

  135. Zularisam AW, Ismail AF, Salim R (2006) Behaviours of natural organic matter in membrane filtration for surface water treatment - a review. Desalination 194:211–231. https://doi.org/10.1016/j.desal.2005.10.030

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the National Council for Science and Technology (CONACYT) which is a decentralized public organization of the Mexican federal government. The support program is 005040 – Doctorate in Biosystems Engineering, and support number 719658.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Estefanía Espinoza Márquez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The standard quality requirements for irrigation water are presented

• Membrane technology is suggested as the primary means for irrigation water reuse

• The use of nanomaterials for reducing fouling in membranes is addressed

• Electrochemical techniques for NOM removal are introduced and evaluated

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Espinoza Márquez, E., Soto Zarazúa, G.M. & Pérez Bueno, J. Prospects for the Use of Electrooxidation and Electrocoagulation Techniques for Membrane Filtration of Irrigation Water. Environ. Process. 7, 391–420 (2020). https://doi.org/10.1007/s40710-020-00439-2

Download citation

Keywords

  • Irrigation water reuse
  • Membranes and nanotechnology
  • Electrocoagulation
  • Electro-oxidation
  • Electroconductive membranes