Skip to main content
Log in

The cohomology of Deligne–Lusztig varieties for the general linear group

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

We propose two inductive approaches for determining the cohomology of Deligne–Lusztig varieties in the case of \(G={{\mathrm{GL}}}_n\). The first one uses Demazure compactifications and analyzes the corresponding Mayer–Vietoris spectral sequence. This allows us to give an inductive formula for the Tate twist \(-1\) contribution of the cohomology of a DL-variety. The second approach relies on considering more generally DL-varieties attached to hypersquares in the Weyl group. Here we give explicit formulas for the cohomology of height-one elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Here the symbol \(\hat{s_i}\) means as usual that \(s_i\) is deleted from the above expression.

  2. Indeed let \(i^G_P \longrightarrow i^G_Q \oplus i^G_R\) be an injective map. Then we may suppose w.l.o.g. that \(i^G_P \longrightarrow i^G_Q\) is injective, as well. We may extend the first map to an injection \(i^G_Q \longrightarrow i^G_Q \oplus i^G_R\) and the graph contains \(i^G_P.\)

References

  1. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of g-modules. In: Gel’fand, I.M. (ed.) Lie Groups and Their Representations (Proceedings of Summer School, Bolyai János Mathematical Society, Budapest, 1971), pp. 21–64. Halsted, New York (1975)

    Google Scholar 

  2. Billey, S., Lakshmibai, V.: Singular Loci of Schubert Varieties. Progress in Mathematics, vol. 182. Birkhäuser, Boston (2000)

    Book  MATH  Google Scholar 

  3. Bloch, S.: Algebraic cycles and higher K-theory. Adv. Math. 61(3), 267–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broué, M., Michel, J.: Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées, Finite Reductive Groups, Progress in Mathematics, vol. 141, pp. 73–139. Birkhäuser Boston, Boston, MA (1997)

    MATH  Google Scholar 

  5. Deligne, P.: Action du groupe des tresses sur une catgorie. Invent. Math. 128(1), 159–175 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math. (2) 103(1), 103–161 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Digne, F., Michel, J.: Endomorphisms of Deligne–Lusztig varieties. Nagoya Math. J. 183, 35–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Digne, F., Michel, J., Rouquier, R.: Cohomologie des variétés de Deligne–Lusztig. Adv. Math. 209(2), 749–822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dat, J.-F., Orlik, S., Rapoport, M.: Period Domains Over Finite and p-Adic Fields, Cambridge Tracts in Mathematics, vol. 183. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  10. Drinfeld, V.G.: Coverings of p-adic symmetric domains. Funkcional. Anal. i Prilozen 10(2), 29–40 (1976)

    MathSciNet  Google Scholar 

  11. Dudas, O.: Cohomology of Deligne–Lusztig varieties for short-length regular elements in exceptional groups. J. Algebra 392, 276–298 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fulton, W., Harris, J.: Representation Theory. A First Course. Graduate Texts in Mathematics. Readings in Mathematics, vol. 129. Springer, New York (1991)

    Google Scholar 

  13. Fulton, W.: Intersection theory. Second ed. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), vol. 2. Springer, Berlin (1998)

  14. Genestier, A.: Espaces symétriques de Drinfeld, Astérisque No. 234 (1996)

  15. Grosse-Klönne, E.: Integral structures in the p-adic holomorphic discrete series. Represent. Theory 9, 354–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geck, M., Pfeiffer, G.: On the irreducible characters of Hecke algebras. Adv. Math. 102(1), 79–94 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, London Mathematical Society Monographs. New Series, vol. 21. The Clarendon Press, New York (2000)

    MATH  Google Scholar 

  18. Geck, M., Kim, S., Pfeiffer, G.: Minimal length elements in twisted conjugacy classes of finite Coxeter groups. J. Algebra 229(2), 570–600 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hazewinkel, M., Vorst, T.: On the Snapper/Liebler–Vitale/Lam Theorem on permutation representations of the symmetric group. J. Pure Appl. Algebra 23, 29–32 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Howe, R.: Harish-Chandra Homomorphisms for p-Adic Groups. With the Collaboration of Allen Moy. CBMS Regional Conference Series in Mathematics, vol. 59. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence, RI (1985)

  21. Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, vol. E30. Friedrich Vieweg und Sohn, Braunschweig (1996)

    Book  MATH  Google Scholar 

  22. Ito, T.: Weight-monodromy conjecture for \(p\)-adically uniformized varieties. Invent. Math. 159(3), 607–656 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kumar, S.: Kac–Moody Groups, their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhuser, Boston (2002)

    Book  MATH  Google Scholar 

  24. Lehrer, G.I.: The spherical building and regular semisimple elements. Bull. Aust. Math. Soc. 27(3), 361–379 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius. Invent. Math. 38(2), 101–159 (1976/1977)

  26. Lusztig, G.: Characters of Reductive Groups Over a Finite Field. Annals of Mathematics Studies, vol. 107. Princeton University Press, Princeton (1984)

    MATH  Google Scholar 

  27. Lusztig, G.: Homology bases arising from reductive groups over a finite field. In: Carter, R.W., et al. (eds.), Algebraic Groups and their Representations Proceedings of the NATO Advanced Study Institute on modular representations and subgroup structure of algebraic groups and related finite groups, Cambridge, UK, June 23–July 4, 1997. NATO ASI Series C, Mathematical Physical Sciences, vol. 517, pp. 53–72. Kluwer Academic Publishers, Dordrecht (1998)

  28. Liebler, R.A., Vitale, M.R.: Ordering the partition characters of the symmetric group. J. Algebra 25, 487–489 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Orlik, S.: Kohomologie von Periodenbereichen über endlichen Körpern. J. Reine Angew. Math. 528, 201–233 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Rémy, B., Thuillier, A., Werner, A.: Automorphisms of Drinfeld half-spaces over a finite field. Compos. Math. 149, 1211–1224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Séminaire de Géomtrie Algébrique du Bois Marie: Cohomologie l-adique et Fonctions L—(SGA 5). Lecture Notes in Mathematics, vol. 589. Springer, Berlin (1965–1966)

  32. Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105, 47–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I want to thank Olivier Dudas for his numerous remarks on this paper. I am grateful for the invitation to Paris and all the discussions with François Digne and Jean Michel. Finally I thank Roland Huber, Michael Rapoport and Markus Reineke for their support. Dedicated to Michael Rapoport on the occasion of his 65th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Orlik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Michael Rapoport on the occasion of his 65th birthday

Appendix

Appendix

Here we give summarizing tables of the cohomology of DL-varieties with respect to Weyl group elements of full support in \({{\mathrm{GL}}}_3\) and \({{\mathrm{GL}}}_4\). We list only representatives of cyclic shift classes.

\({{\mathrm{GL}}}_3\)

\(H^*_c(X(w))\)

(1, 2, 3)

\(j_{(1,1,1)}[-2] \oplus j_{(2,1)}(-1)[-3] \oplus j_{(3)}(-2)[-4]\)

(1, 3)

\(j_{(1,1,1)}[-3] \oplus j_{(3)}(-3)[-6]\)

\({{\mathrm{GL}}}_4\)

\(H^*_c(X(w))\)

(1, 2, 3, 4)

\(j_{(1,1,1,1)}[-3] \oplus j_{(2,1,1)}(-1)[-4] \oplus j_{(3,1)}(-2)[-5] \oplus j_{(4)}(-3)[-6] \)

(1, 2, 4)

\(j_{(1,1,1,1)}[-4] \oplus j_{(2,2)}(-2)[-5] \oplus j_{(4)}(-4)[-8]\)

(1, 3)(2, 4)

\(j_{(1,1,1,1)}[-4] \oplus j_{(2,2)}(-1)[-4] \oplus j_{(2,1,1)}(-2)[-5] \oplus j_{(3,1)}(-2)[-5] \oplus \)

 

\(j_{(2,2)}(-3)[-6] \oplus j_{(4)}(-4)[-8]\)

(1, 3, 2, 4)

\(j_{(1,1,1,1)}[-5] \oplus j_{(2,2)}(-2)[-6] \oplus j_{(2,1,1)}(-2)[-6] \oplus j_{(2,2)}(-3)[-7] \oplus \)

 

\(j_{(3,1)}(-3)[-7] \oplus j_{(4)}(-5)[-10]\)

(1, 4)

\(j_{(1,1,1,1)}[-5] \oplus j_{(2,1,1)}(-1)[-5] \oplus j_{(2,2)}(-2)[-6] \oplus j_{(2,2)}(-3)[-7] \oplus \)

 

\(j_{(3,1)}(-4)[-8] \oplus j_{(4)}(-5)[-10]\)

(1, 4)(2, 3)

\(j_{(1,1,1,1)}[-6] \oplus j_{(2,1,1)}(-2)[-7] \oplus j_{(2,2)}(-3)[-8]^2 \oplus j_{(3,1)}(-4)[-9] \oplus j_{(4)}(-6)[-12]\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlik, S. The cohomology of Deligne–Lusztig varieties for the general linear group. Res Math Sci 5, 13 (2018). https://doi.org/10.1007/s40687-018-0131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-018-0131-7

Navigation