Fabrication of Highly Flat, Flexible Mesh Electrode for Use in Photovoltaics

Abstract

Metal mesh-based flexible transparent conductive electrodes have attracted much interest as one alternative to conventional indium tin oxide electrodes. In addition to ongoing efforts to develop scalable and cost-effective fabrication processes for high-resolution mesh patterns, the high surface roughness of the mesh which can cause short circuiting and current leakage in optoelectronic devices must be solved. Herein, high-resolution (below ~ 10 μm) mesh patterns with various thicknesses are fabricated by scalable, selective transfer printing and then stably and sufficiently sintered under delicately controlled flash irradiation. A polyethylene terephthalate (PET) film is laminated on the patterns overlaid with a UV-curable resin and then peeled off after UV curing, which produces mesh patterns strongly bonded to the cured resin to be separated in a fully embedded form. The final, highly flat, flexible mesh with a low sheet resistance of 1.7 Ω sq−1, a high optical transparency of 88.6%, excellent mechanical flexibility, and strong adhesion to the substrate is successfully implemented in a flexible perovskite solar cell with a high power conversion efficiency (PCE) of 14.92%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Brown, T. M., De Rossi, F., Di Giacomo, F., Mincuzzi, G., Zardetto, V., Reale, A., et al. (2014). Progress in flexible dye solar cell materials, processes and devices. Journal of Materials Chemistry A, 2, 10788–10817.

    Article  Google Scholar 

  2. 2.

    Fan, X., Wang, J., Wang, H., Liu, X., & Wang, H. (2015). Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT:PSS electrodes on plastic substrates. ACS Applied Materials & Interfaces, 7(30), 16287–16295.

    Article  Google Scholar 

  3. 3.

    Zou, J., Yip, H.-L., Hau, S. K., & Jen, A.K.-Y. (2010). Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Applied Physics Letters, 96, 203301.

    Article  Google Scholar 

  4. 4.

    Heo, J. H., Shin, D. H., Jang, M. H., Lee, M. L., Kang, M. G., & Im, S. H. (2017). Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes. Journal of Materials Chemistry A, 5, 21146–21152.

    Article  Google Scholar 

  5. 5.

    Wang, T., Jing, L.-C., Zhu, Q., Ethiraj, A. S., Tian, Y., Zhao, H., et al. (2020). Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT:PSS nanocomposites as flexible transparent electrodes for OLEDs. Applied Surface Science, 500, 143997.

    Article  Google Scholar 

  6. 6.

    Han, J. W., Jung, B., Kim, D. W., Lim, K. T., Jeong, S.-Y., & Kim, Y. H. (2019). Transparent conductive hybrid thin-films based on copper-mesh/conductive polymer for ITO-free organic light-emitting diodes. Organic Electronics, 73, 13–17.

    Article  Google Scholar 

  7. 7.

    Park, K., Woo, K., Kim, J., Lee, D., Ahn, Y., Song, D., et al. (2019). High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation. ACS Applied Materials & Interfaces, 11(6), 14882–14891.

    Article  Google Scholar 

  8. 8.

    Liu, Y., Shang, S., Mo, S., Wang, P., & Wang, H. (2020). Eco-friendly strategies for the material and fabrication of wearable sensors. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00285-5.

    Article  Google Scholar 

  9. 9.

    Ra, Y., La, M., Cho, S., Park, S. J., & Choi, D. (2020). Scalable batch fabrication of flexible, transparent and self-triggered tactile sensor array based on triboelectric effect. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00267-7.

    Article  Google Scholar 

  10. 10.

    Jeong, C., Joung, C., Lee, S., Feng, M. Q., & Park, Y.-B. (2020). Carbon nanocomposite based mechanical sensing and energy harvesting. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 247–267.

    Article  Google Scholar 

  11. 11.

    Bazargan, A. M., Sharif, F., Mazinani, S., & Naderi, N. (2017). A high quality ITO/PET electrode for flexible and transparent optoelectronic devices. Journal of Materials Science: Materials in Electronics, 28, 2962–2969.

    Google Scholar 

  12. 12.

    Leterrier, Y., Médico, L., Demarco, F., Månson, J.-A.E., Betz, U., Escolà, M. F., et al. (2004). Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films, 460(1–2), 156–166.

    Article  Google Scholar 

  13. 13.

    Li, T.-C., & Chang, R.-C. (2014). Improving the performance of ITO thin films by coating PEDOT:PSS. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 329–334.

    Article  Google Scholar 

  14. 14.

    Kang, M., Kim, J., Jang, B., Chae, Y., Kim, J.-H., & Ahn, J.-H. (2017). Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano, 11(8), 7950–7957.

    Article  Google Scholar 

  15. 15.

    Park, S., Vosguerichian, M., & Bao, Z. (2013). A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 5, 1727–1752.

    Article  Google Scholar 

  16. 16.

    Huseynova, G., Kim, Y. H., Lee, J.-H., & Lee, J. (2020). Rising advancements in the application of PEDOT:PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics. Journal of Information Display, 21(2), 71–91.

    Article  Google Scholar 

  17. 17.

    Li, W., Zhang, H., Shi, S., Xu, J., Qin, X., He, Q., et al. (2020). Recent progress in silver nanowire networks for flexible organic electronics. Journal of Materials Chemistry C, 8, 4636–4674.

    Article  Google Scholar 

  18. 18.

    Hwang, H., Kim, A., Zhong, Z., Kwon, H.-C., Jeong, S., & Moon, J. (2016). Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes. Advanced Functional Materials, 26(36), 6545–6554.

    Article  Google Scholar 

  19. 19.

    Zhong, Z., Lee, H., Kang, D., Kwon, S., Choi, Y.-M., Kim, I., et al. (2016). Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications. ACS Nano, 10(8), 7847–7854.

    Article  Google Scholar 

  20. 20.

    Kinner, L., Nau, S., Popovic, K., Sax, S., Burgués-Ceballos, I., Hermerschmidt, F., et al. (2017). Inkjet-printed embedded Ag-PEDOT:PSS electrodes with improved light out coupling effects for highly efficient ITO-free blue polymer light emitting diodes. Applied Physics Letters, 110, 101107.

    Article  Google Scholar 

  21. 21.

    Zhong, Z., Ko, P., Seok, J. Y., Kim, H., Kwon, S., Youn, H., et al. (2020). Roll-to-roll reverse-offset printing combined with photonic sintering process for highly conductive ultrafine patterns. Advanced Engineering Materials. https://doi.org/10.1002/adem.202000463.

    Article  Google Scholar 

  22. 22.

    Lee, H.-J., Cho, K.-Y., Oh, S., Park, S.-Y., Im, Y.-B., Yoon, Y.-J., et al. (2020). Optical and electrical properties of multilayer grid electrodes for highly durable transparent conductive electrodes. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00205-7.

    Article  Google Scholar 

  23. 23.

    Lee, S. H., Kim, S. W., Park, C. W., Jeong, H. E., OK, J. G., & Kwak, M. K. (2017). Scalable fabrication of flexible transparent heaters comprising continuously created metallic micromesh patterns incorporated with biomimetic anti-reflection layers. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 177–181.

    Article  Google Scholar 

  24. 24.

    Jang, Y.-R., Joo, S.-J., Chu, J.-H., Uhm, H.-J., Park, J.-W., Ryu, C.-H., et al. (2020). A review on intense pulsed light sintering technologies for conductive electrodes in printed electronics. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00193-8.

    Article  Google Scholar 

  25. 25.

    Lee, H. B., Jin, W. Y., Ovhal, M. M., Kumar, N., & Kang, J.-W. (2019). Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. Journal of Materials Chemistry C, 7, 1087–1110.

    Article  Google Scholar 

  26. 26.

    Xu, J.-L., Liu, Y.-H., Gao, X., Sun, Y., Shen, S., Cai, X., et al. (2017). Embedded Ag grid electrodes as current collector for ultraflexible transparent solid-state supercapacitor. ACS Applied Materials & Interfaces, 9(33), 27649–27656.

    Article  Google Scholar 

  27. 27.

    Chen, X., Guo, W., Xie, L., Wei, C., Zhuang, J., Su, W., et al. (2017). Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications. ACS Applied Materials & Interfaces, 9(42), 37048–37054.

    Article  Google Scholar 

  28. 28.

    Li, Y., Meng, L., Yang, Y. M., Xu, G., Hong, Z., Chen, Q., et al. (2016). High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 7, 10214.

    Article  Google Scholar 

  29. 29.

    Zhou, L., Xiang, H.-Y., Shen, S., Li, Y.-Q., Chen, J.-D., Xie, H.-J., et al. (2014). High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes. ACS Nano, 8(12), 12796–12805.

    Article  Google Scholar 

  30. 30.

    Yu, J.-S., Jung, G. H., Jo, J., Kim, J. S., Kim, J. W., Kwak, S.-W., et al. (2013). Transparent conductive film with printable embedded patterns for organic solar cells. Solar Energy Materials & Solar Cells, 109, 142–147.

    Article  Google Scholar 

  31. 31.

    Cai, J., Zhang, M., Sun, Z., Zhang, C., Liang, C., Khan, A., et al. (2019). Highly-facile template-based selective electroless metallization of micro- and nanopatterns for plastic electronics and plasmonics. Journal of Materials Chemistry C, 7, 4363–4373.

    Article  Google Scholar 

  32. 32.

    Jang, J., Im, H.-G., Jin, J., Lee, J., Lee, J.-Y., & Bae, B.-S. (2016). A flexible and robust transparent conducting electrode platform using an electroplated silver grid/surface-embedded silver nanowire hybrid structure. ACS Applied Materials & Interfaces, 8(40), 27035–27043.

    Article  Google Scholar 

  33. 33.

    Liu, Y.-H., Xu, J.-L., Shen, S., Cai, X.-L., Chen, L.-S., & Wang, S.-D. (2017). High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. Journal of Materials Chemistry A, 5, 9032–9041.

    Article  Google Scholar 

  34. 34.

    Khan, A., Lee, S., Jang, T., Xiong, Z., Zhang, C., Tang, J., et al. (2016). High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small (Weinheim an der Bergstrasse, Germany), 12(22), 3021–3030.

    Article  Google Scholar 

  35. 35.

    Lee, Y., Jin, W.-Y., Cho, K. Y., Kang, J.-W., & Kim, J. (2016). Thermal pressing of a metal-grid transparent electrode into a plastic substrate for flexible electronic devices. Journal of Materials Chemistry C, 4, 7577–7583.

    Article  Google Scholar 

  36. 36.

    Oh, Y. S., Lee, H., Choi, D. Y., Lee, S.-U., Kim, H., Yoo, S., et al. (2016). High-performance, solution-processed, embedded multiscale metallic transparent conductors. ACS Applied Materials & Interfaces, 8(17), 10937–10945.

    Article  Google Scholar 

  37. 37.

    Mao, L., Chen, Q., Li, Y., Li, Y., Cai, J., Su, W., et al. (2014). Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy, 10, 259–267.

    Article  Google Scholar 

  38. 38.

    Jin, W.-Y., Ginting, R. T., Ko, K.-J., & Kang, J.-W. (2016). Ultra-smooth, fully solution-processed large-area transparent conducting electrodes for organic devices. Scientific Reports, 6, 36475.

    Article  Google Scholar 

  39. 39.

    Kim, H.-J., Lee, S.-H., Lee, J., Lee, E.-S., Choi, J.-H., Jung, J.-H., et al. (2014). High-durable AgNi nanomesh film for a transparent conducting electrode. Small (Weinheim an der Bergstrasse, Germany), 10(18), 3767–3774.

    Article  Google Scholar 

  40. 40.

    Ou, Q.-D., Xie, H.-J., Chen, J.-D., Zhou, L., Li, Y.-Q., & Tang, J.-X. (2016). Enhanced light harvesting in flexible polymer solar cells: synergistic simulation of a plasmonic meta-mirror and a transparent silver mesowire electrode. Journal of Materials Chemistry A, 4, 18952–18962.

    Article  Google Scholar 

  41. 41.

    Wang, J., Chen, X., Jiang, F., Luo, Q., Zhang, L., Tan, M., et al. (2018). Electrochemical corrosion of Ag electrode in the silver grid electrode-based flexible perovskite solar cells and the suppression method. Solar RRL, 2(9), 1800118.

    Article  Google Scholar 

  42. 42.

    Zhang, W., Xiong, J., Wang, S., Liu, W.-E., Li, J., Wang, D., et al. (2017). Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells. Journal of Power Sources, 337, 118–124.

    Article  Google Scholar 

  43. 43.

    Chen, D., Fan, G., Zhang, H., Zhou, L., Zhu, W., Xi, H., et al. (2019). Efficient Ni/Au mesh transparent electrodes for ITO-free planar perovskite solar cells. Nanomaterials, 9, 932.

    Article  Google Scholar 

  44. 44.

    Yang, H., Kwon, H.-C., Ma, S., Kim, K., Yun, S.-C., Jang, G., et al. (2020). Energy level-graded Al-doped ZnO protection layers for copper nanowire-based window electrodes for efficient flexible perovskite solar cells. ACS Applied Materials & Interfaces, 12, 13824–13835.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea funded by the Korean government (MSIP) (2019R1C1C1007931) and the Ministry of Trade, Industry & Energy (MOTIE, Korea) under the Industrial Technology Innovation Program (20000665). This study was also supported by the government-funded Research Program of the Korea Institute of Machinery and Materials Technology Innovation Program (NK224B) and the Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for the Industries of Economic Cooperation Region (Grant N0002310).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Areum Kim or Kyoohee Woo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5820 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Ko, P., Youn, H. et al. Fabrication of Highly Flat, Flexible Mesh Electrode for Use in Photovoltaics. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2021). https://doi.org/10.1007/s40684-020-00308-1

Download citation

Keywords

  • Flat and flexible metal mesh electrode
  • Selective transfer printing
  • Flash lamp annealing
  • Perovskite solar cell