Direct Ink Writing of Mineral Materials: A review

Abstract

Due to the intrinsically limited mechanical properties, functionalities and structures of mineral material composites (MMCs) made through traditional fabrication approaches, there is a critical need to develop novel three dimensional (3D) forming techniques that can construct mineral material composites (MMCs) and structures with high performance and functionalities. The direct ink writing (DIW), as a slurry deposition based additive manufacturing approach for MMCs, offers many advantages in terms of high precision, complex geometry, multi-material capability, cost effectiveness and environmental friendliness. This review gives a comprehensive overview on the state-of-art of DIW fabricated MMCs, including material classification, formulation and processing. It presents the key aspects of material processing and their effects on the properties and performance of DIW formed mineral materials. In addition, it illustrates the applications of DIW in the fields of architecture, tissue engineering, functional micro parts and geological engineering modelling.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Copyright 2018, Elsevier

Fig. 4

Copyright 2018, Elsevier

Fig. 5
Fig. 6

Copyright 2004, Elsevier

Fig. 7

Copyright 2018, Springer Nature

Fig. 8

Copyright 2018, Elsevier

Fig. 9

Copyright 2016, John Wiley and Sons

Fig. 10

Copyright 2018, Elsevier

Fig. 11

Copyright 2018, John Wiley and Sons

Fig. 12

Copyright 2018, Elsevier

Abbreviations

DIW:

Direct ink writing

AM:

Additive manufacturing

3D:

Three-dimensional

2D:

Two-dimensional

MMCs:

Mineral material composites

References

  1. 1.

    Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society,89(12), 3599–3609.

    Article  Google Scholar 

  2. 2.

    Lewis, J. A. (2006). Direct ink writing of 3D functional materials. Advanced Functional Materials,16(17), 2193–2204.

    Article  Google Scholar 

  3. 3.

    Simon, J. L., Michna, S., Lewis, J. A., Rekow, E. D., Thompson, V. P., Smay, J. E., et al. (2007). In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. Journal of Biomedical Materials Research Part A,83A(3), 747–758.

    Article  Google Scholar 

  4. 4.

    Fu, Q., Saiz, E., & Tomsia, A. P. (2011). Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomaterialia,7(10), 3547–3554.

    Article  Google Scholar 

  5. 5.

    Shin, J. H., & Kang, H. W. (2018). The development of gelatin-based bio-ink for use in 3D hybrid bioprinting. International Journal of Precision Engineerin and Manufacturing,19(5), 767–771.

    Article  Google Scholar 

  6. 6.

    Rajabi, J., Muhamad, N., Sulong, A. B., Fayyaz, A., & Wahi, A. (2012). Advantages and limitations of using nano sized powders for powder injection molding process: a review. Jurnal Teknologi,59(2), 137–140.

    Google Scholar 

  7. 7.

    Sun, Q., Yang, Z., Cheng, H., Peng, Y., Huang, Y., & Chen, M. (2018). Creation of three-dimensional structures by direct ink writing with kaolin suspensions. Journal of Materials Chemistry C,6(42), 11392–11400. https://doi.org/10.1039/C8TC03152E.

    Article  Google Scholar 

  8. 8.

    He, Z., Shanmugasundaram, T. S., & Singh, G. J. P. A. M. (2018). Inkjet 3D printing of clay ceramics for water treatment. Progress in Additive Manufacturing,3(4), 215–219. https://doi.org/10.1007/s40964-018-0055-1.

    Article  Google Scholar 

  9. 9.

    Revelo, C. F., & Colorado, H. A. (2018). 3D printing of kaolinite clay ceramics using the Direct Ink Writing (DIW) technique. Ceramics International,44(5), 5673–5682.

    Article  Google Scholar 

  10. 10.

    Ahmad, F. N., Jaafar, M., Palaniandy, S., & Azizli, K. A. M. (2008). Effect of particle shape of silica mineral on the properties of epoxy composites. Composites Science & Technology,68(2), 346–353.

    Article  Google Scholar 

  11. 11.

    Ji, D., Zhou, H., Tong, Y., Wang, J., Zhu, M., Chen, T., et al. (2017). Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chemical Engineering Journal,313, 1623–1632.

    Article  Google Scholar 

  12. 12.

    Khare, V., Sonkaria, S., Lee, G.-Y., Ahn, S.-H., & Chu, W.-S. (2017). From 3D to 4D printing—design, material and fabrication for multi-functional multi-materials. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 291–299.

    Article  Google Scholar 

  13. 13.

    Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., Song, J.-H., et al. (2014). Hybrid manufacturing in micro/nano scale: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,1(1), 75–92.

    Article  Google Scholar 

  14. 14.

    Yi, H., Hwang, I., Sung, M., Lee, D., Kim, J. H., Kang, S. M., et al. (2014). Bio-inspired adhesive systems for next-generation green manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology,1(4), 347–351.

    Article  Google Scholar 

  15. 15.

    Ho, C. M. B., Ng, S. H., & Yoon, Y. J. (2015). A review on 3D printed bioimplants. International Journal of Precision Engineering and Manufacturing,16(5), 1035–1046.

    Article  Google Scholar 

  16. 16.

    Sa, M. W., & Kim, J. Y. (2013). Effect of various blending ratios on the cell characteristics of PCL and PLGA scaffolds fabricated by polymer deposition system. International Journal of Precision Engineering and Manufacturing,14(4), 649–655.

    Article  Google Scholar 

  17. 17.

    Shah, A. U. R., Prabhakar, M. N., & Song, J.-I. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites—a review. International Journal of Precision Engineering and Manufacturing-Green Technology,4(2), 247–262.

    Article  Google Scholar 

  18. 18.

    Lu, W., Jing, G., Bian, X., Yu, H., & Cui, T. (2016). Micro catalytic methane sensors based on 3D quartz structures with cone-shaped cavities etched by high-resolution abrasive sand blasting. Sensors and Actuators A: Physical,242, 9–17.

    Article  Google Scholar 

  19. 19.

    Ma, J., Tang, H., Hu, X., Bobet, A., Yong, R., & Eldin, M. A. M. E. (2017). Model testing of the spatial–temporal evolution of a landslide failure. Bulletin of Engineering Geology and the Environment,76(1), 323–339.

    Article  Google Scholar 

  20. 20.

    Adamu, M., Mohammed, B. S., & Shafiq, N. (2017). Effect of polycarboxylate superplasticizer dosage on the mechanical performance of roller compacted rubbercrete for pavement applications. Journal of Engineering & Applied Science,12(20), 5253–5260.

    Google Scholar 

  21. 21.

    Larisa, U., Solbon, L., & Sergei, B. (2017). Fibre-reinforced concrete with mineral fibres and nanosilica. Procedia Engineering,195, 147–154.

    Article  Google Scholar 

  22. 22.

    Egorov, A. A., Fedotov, A. Y., Mironov, A. V., Komlev, V. S., Popov, V. K., & Zobkov, Y. V. (2016). 3D printing of mineral-polymer bone substitutes based on sodium alginate and calcium phosphate. Beilstein Journal of Nanotechnology,7, 1794–1799.

    Article  Google Scholar 

  23. 23.

    Fedotov, A. Y., Egorov, A. A., Zobkov, Y. V., Mironov, A. V., Popov, V. K., Barinov, S. M., et al. (2016). 3D printing of mineral-polymer structures based on calcium phosphate and polysaccharides for tissue engineering. Inorganic Materials Applied Research,7(2), 240–243.

    Article  Google Scholar 

  24. 24.

    Gómez, P., Elduque, D., Clavería, I., Pina, C., & Javierre, C. (2020). Influence of the material composition on the environmental impact of ceramic glasses. International Journal of Precision Engineering and Manufacturing-Green Technology,7, 431–442.

    Article  Google Scholar 

  25. 25.

    Chen, H., Xu, Q., Chen, S., & Zhang, Z. (2009). Evaluation and design of fibre-reinforced asphalt mixtures. Materials & Design,30(7), 2595–2603.

    Article  Google Scholar 

  26. 26.

    Fratzl, P., Gupta, H. S., Paschalis, E. P., & Roschger, P. (2004). Structure and mechanical quality of the collagen–mineral nano-composite in bone. Journal of Materials Chemistry,14(14), 2115–2123.

    Article  Google Scholar 

  27. 27.

    Yazıcı, H., Yardımcı, M. Y., Aydın, S., & Karabulut, A. Ş. (2009). Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Construction and Building Materials,23(3), 1223–1231.

    Article  Google Scholar 

  28. 28.

    Puget, P., Chenu, C., & Balesdent, J. (2000). Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. European Journal of Soil Science,51(4), 595–605.

    Article  Google Scholar 

  29. 29.

    Baldock, J. A., & Skjemstad, J. O. (2000). Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry,31(7), 697–710.

    Article  Google Scholar 

  30. 30.

    Kairakbaev, A. K., Abdrakhimova, E. S., & Abdrakhimov, V. Z. (2015). Phase composition of heat-insulation materials based on oil-shale wastes. Glass and Ceramics,72(3–4), 96–99.

    Article  Google Scholar 

  31. 31.

    Corinaldesi, V., & Moriconi, G. (2004). Durable fibre reinforced self-compacting concrete. Cement and Concrete Research,34(2), 249–254.

    Article  Google Scholar 

  32. 32.

    Szabó, J. S., & Czigány, T. (2003). Static fracture and failure behavior of aligned discontinuous mineral fibre reinforced polypropylene composites. Polymer Testing,22(6), 711–719.

    Article  Google Scholar 

  33. 33.

    Lu, Z., Xia, Y., Miao, K., Li, S., Zhu, L., Nan, H., et al. (2019). Microstructure control of highly oriented short carbon fibres in SiC matrix composites fabricated by direct ink writing. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.05.283.

    Article  Google Scholar 

  34. 34.

    Tai, Y. S., Pan, H. H., & Kung, Y. N. (2011). Mechanical properties of steel fibre reinforced reactive powder concrete following exposure to high temperature reaching 800 °C. Nuclear Engineering and Design,241(7), 2416–2424.

    Article  Google Scholar 

  35. 35.

    Bijwe, J. (1997). Composites as friction materials: Recent developments in non-asbestos fibre reinforced friction materials—a review. Polymer Composites,18(3), 378–396.

    Article  Google Scholar 

  36. 36.

    Lee, C.-M., Woo, W.-S., & Roh, Y.-H. (2017). Remanufacturing: Trends and issues. International Journal of Precision Engineering and Manufacturing-Green Technology,4(1), 113–125.

    Article  Google Scholar 

  37. 37.

    Elshafie, S., Boulbibane, M., & Whittleston, G. (2017). Influence of mineral admixtures on the mechanical properties of fresh and hardened concrete. Construction Science,19(1), 4–12.

    Google Scholar 

  38. 38.

    Singh, S., Ransinchung, G. D., & Kumar, P. (2017). Effect of mineral admixtures on fresh, mechanical and durability properties of RAP inclusive concrete. Construction and Building Materials,156, 19–27.

    Article  Google Scholar 

  39. 39.

    Li, W., & Xu, J. (2009). Mechanical properties of basalt fibre reinforced geopolymeric concrete under impact loading. Materials Science and Engineering A,505(1), 178–186.

    Article  Google Scholar 

  40. 40.

    Pickering, S. J. (2006). Recycling technologies for thermoset composite materials—current status. Composites Part A Applied Science and Manufacturing,37(8), 1206–1215.

    Article  Google Scholar 

  41. 41.

    Wang, W., Song, J., Yan, B., & Yu, Y. (2016). Metal injection molding of tungsten and its alloys. Metal Powder Report,71(6), 441–444.

    Article  Google Scholar 

  42. 42.

    Dehghan-Manshadi, A., Bermingham, M., Dargusch, M., Stjohn, D., & Ma, Q. (2017). Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technology,319, 289–301.

    Article  Google Scholar 

  43. 43.

    Rueschhoff, L. M., Trice, R. W., & Youngblood, J. P. (2017). Near-net shaping of silicon nitride via aqueous room-temperature injection molding and pressureless sintering. Ceramics International,43(14), 10791–10798.

    Article  Google Scholar 

  44. 44.

    Han, J. S., Chang, W. G., Park, J. M., & Park, S. J. (2017). Powder injection molding of PNN-PMN-PZN doped low temperature sintering PZT ceramics. Journal of Manufacturing Processes,28, 235–242.

    Article  Google Scholar 

  45. 45.

    Chen, T., Sun, A., Chu, C., Wu, H., Wang, J., Wang, J., et al. (2019). Rheological behavior of titania ink and mechanical properties of titania ceramic structures by 3D direct ink writing using high solid loading titania ceramic ink. Journal of Alloys and Compounds,783, 321–328.

    Article  Google Scholar 

  46. 46.

    Sun, Q., Peng, Y., Cheng, H., Mou, Y., Yang, Z., Liang, D., et al. (2019). Direct ink writing of 3D cavities for direct plated copper ceramic substrates with kaolin suspensions. Ceramics International,45(9), 12535–12543.

    Article  Google Scholar 

  47. 47.

    Wang, Y. E., Han, Q., Wei, S. M., Li, P. L., Yang, M. M., Qin, Y. L., et al. (2012). Analysis to effective elastic modulus and porosity for artificial bone scaffold with hydroxyapatite microspheres. Advanced Materials Research,424–425, 241–245.

    Google Scholar 

  48. 48.

    Li, C., Wu, J., Tang, H., Hu, X., Liu, X., Wang, C., et al. (2016). Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock. Engineering Geology,204, 65–76.

    Article  Google Scholar 

  49. 49.

    Abdeljawad, F., Bolintineanu, D. S., Cook, A., Brown-Shaklee, H., DiAntonio, C., Kammler, D., et al. (2019). Sintering processes in direct ink write additive manufacturing: A mesoscopic modeling approach. Acta Materialia,169, 60–75.

    Article  Google Scholar 

  50. 50.

    Elsayed, H., Picicco, M., Dasan, A., Kraxner, J., Galusek, D., & Bernardo, E. (2019). Glass powders and reactive silicone binder: Interactions and application to additive manufacturing of bioactive glass-ceramic scaffolds. Ceramics International,45(11), 13740–13746.

    Article  Google Scholar 

  51. 51.

    Akinribide, O. J., Obadele, B. A., Akinwamide, S. O., Bilal, H., Ajibola, O. O., Ayeleru, O. O., et al. (2019). Sintering of binderless TiN and TiCN-based cermet for toughness applications: Processing techniques and mechanical properties: A review. Ceramics International,45(17 Part A), 21077–21090.

    Article  Google Scholar 

  52. 52.

    Kumar, P., Rodrigues, H. J., Ds, L., Hubaish, M., & Naik, B. G. (2017). Design and fabrication of powder based binder jetting 3D printing. Ceramics International,3(9), 142–150.

    Google Scholar 

  53. 53.

    Zafar, A., Schjødt-Thomsen, J., Sodhi, R., Goacher, R., & Kubber, D. D. (2013). Investigation of the ageing effects on phenol-urea-formaldehyde binder and alkanol amine-acid anhydride binder coated mineral fibres. Polymer Degradation and Stability,98(1), 339–347.

    Article  Google Scholar 

  54. 54.

    Wang, J., Calhoun, M. D., & Severtson, S. J. (2008). Dynamic rheological study of paraffin wax and its organoclay nanocomposites. Journal of Applied Polymer Science,108(4), 2564–2570.

    Article  Google Scholar 

  55. 55.

    Luyt, A. S., & Geethamma, V. G. (2007). Effect of oxidized paraffin wax on the thermal and mechanical properties of linear low-density polyethylene–layered silicate nanocomposites. Polymer Testing,26(4), 461–470.

    Article  Google Scholar 

  56. 56.

    Miyanaji, H., Li, Y., Zhang, S., & Zandinejad, A. A preliminary study of the graded dental porcelain ceramic structures fabricated via binder jetting 3D printing. In: Proceedings of the Solid Freeform Fabrication Symposium Conference, 2014 (pp. 578–589)

  57. 57.

    Murat, M., Cheikh, A. A. J. C., & Research C. (1989). Behavior of E-glass fibre in basic aqueous medium resulting from the dissolution of mineral binders containing metakaolinite. Cement and Concrete Research,19(1), 16–24.

    Article  Google Scholar 

  58. 58.

    Tang, D., Hao, L., Li, Y., Xiong, W., Sun, T., & Yan, X. (2018). Investigation of wax-based barite slurry and deposition for 3D printing landslide model. Composites Part A Applied Science and Manufacturing,108, 99–106.

    Article  Google Scholar 

  59. 59.

    Trunec, M., & Cihlar, J. (2002). Thermal removal of multicomponent binder from ceramic injection mouldings. Journal of the European Ceramic Society,22(13), 2231–2241.

    Article  Google Scholar 

  60. 60.

    Oliveira, R. V. B., Soldi, V., Fredel, M. C., & Pires, A. T. N. (2005). Ceramic injection moulding: Influence of specimen dimensions and temperature on solvent debinding kinetics. Journal of Materials Processing Technology,160(2), 213–220.

    Article  Google Scholar 

  61. 61.

    Rueschhoff, L., Costakis, W., Michie, M., Youngblood, J., & Trice, R. (2016). Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions. International Journal of Applied Ceramic Technology,13(5), 821–830.

    Article  Google Scholar 

  62. 62.

    Kafara, M., Kemnitzer, J., Westermann, H. H., & Steinhilper, R. (2018). Influence of binder quantity on dimensional accuracy and resilience in 3D-printing. Procedia Manufacturing,21, 638–646.

    Article  Google Scholar 

  63. 63.

    Sabau, A., & Viswanathan, S. (2003). Material properties for predicting wax pattern dimensions in investment casting. Materials Science and Engineering: A,362, 125–134. https://doi.org/10.1016/S0921-5093(03)00569-0.

    Article  Google Scholar 

  64. 64.

    Sun, Z., Qin, M., Li, R., Ma, J., Fang, F., Lu, H., et al. (2017). Preparation of high performance soft magnetic alloy Fe-4Si-0.8P by metal injection molding. Advanced Powder Technology,28(10), 2687–2693.

    Article  Google Scholar 

  65. 65.

    Kate, K. H., Enneti, R. K., Mccabe, T., & Atre, S. V. (2016). Simulations and injection molding experiments for aluminum nitride feedstock. Ceramics International,42(1), 194–203.

    Article  Google Scholar 

  66. 66.

    Peltola, P., Välipakka, E., Vuorinen, J., Syrjälä, S., & Hanhi, K. (2006). Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites. Polymer Engineering and Science,46(8), 995–1000.

    Article  Google Scholar 

  67. 67.

    Montoro, M. A., & Francisca, F. M. (2019). Effect of ion type and concentration on rheological properties of natural sodium bentonite dispersions at low shear rates. Applied Clay Science,178, 105132.

    Article  Google Scholar 

  68. 68.

    Gomes, C. M., Travitzky, N., Greil, P., Oliveira, A. P. N., & Hotza, D. (2010). Laminated Object Manufacturing (LOM) of glass ceramics substrates for LTCC applications (p. 748). Boca Raton: CRC Press.

    Google Scholar 

  69. 69.

    Guo, X., Zhou, Z., Wang, S., Song, Z., Qiang, Z., & Ma, G. (2012). A novel method for preparation of interconnected pore-gradient ceramic foams by gelcasting. Journal of Porous Materials,19(5), 853–858.

    Article  Google Scholar 

  70. 70.

    Di, L. A., Longoni, A., Criscenti, G., Mota, C., Van, B. C., & Moroni, L. (2016). Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication,8(4), 045007.

    Article  Google Scholar 

  71. 71.

    Grasso, S., Biesuz, M., Zoli, L., Taveri, G., Duff, A. I., Ke, D., et al. (2020). A review of cold sintering processes. Advances in Applied Ceramics,119(3), 115–143.

    Article  Google Scholar 

  72. 72.

    Hager, M. D., Greil, P., Leyens, C., van der Zwaag, S., & Schubert, U. S. J. A. M. (2010). Self-healing materials. Advanced Materials,22(47), 5424–5430.

    Article  Google Scholar 

  73. 73.

    Greil, P. (2019). Self-healing engineering ceramics with oxidation-induced crack repair. Advanced Engineering Materials. https://doi.org/10.1002/adem.201901121.

    Article  Google Scholar 

  74. 74.

    Kwon, J., Park, H. W., Park, Y.-B., & Kim, N. (2017). Potentials of additive manufacturing with smart materials for chemical biomarkers in wearable applications. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 335–347.

    Article  Google Scholar 

  75. 75.

    Sharma, A., Mondal, S., Mondal, A. K., Baksi, S., Patel, R. K., Chu, W.-S., et al. (2017). 3D printing: It’s microfluidic functions and environmental impacts. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 323–334.

    Article  Google Scholar 

  76. 76.

    Ly, S. T., & Kim, J. Y. (2017). 4D printing—fused deposition modeling printing with thermal-responsive shape memory polymers. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 267–272.

    MathSciNet  Article  Google Scholar 

  77. 77.

    Moon, S. K., Tan, Y. E., Hwang, J., & Yoon, Y.-J. (2014). Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. International Journal of Precision Engineering and Manufacturing-Green Technology,1(3), 223–228.

    Article  Google Scholar 

  78. 78.

    Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S. (2015). Additive manufacturing of carbon fibre reinforced thermoplastic composites using fused deposition modeling. Composites Part B Engineering,80, 369–378.

    Article  Google Scholar 

  79. 79.

    Mireles, J., Kim, H. C., Lee, I. H., Espalin, D., Medina, F., Macdonald, E., et al. (2013). Development of a fused deposition modeling system for low melting temperature metal alloys. Journal of Electronic Packaging,135(1), 011008.

    Article  Google Scholar 

  80. 80.

    Hao, L., Mellor, S., Seaman, O., Henderson, J., Sewell, N., Sloan, M., et al. (2010). Material characterisation and process development for chocolate additive layer manufacturing. Virtual and Physical Prototyping,5(2), 57–64.

    Article  Google Scholar 

  81. 81.

    Young, A. J., Guillet-Nicolas, R., Marshall, E. S., Kleitz, F., Goodhand, A. J., Glanville, L. B. L., et al. (2019). Direct ink writing of catalytically active UiO-66 polymer composites. Chemical Communications,55(15), 2190–2193.

    Article  Google Scholar 

  82. 82.

    Li, X., Zhang, J. M., Yi, X., Huang, Z., & Duan, H. (2019). Multimaterial 3D printing: multimaterial microfluidic 3D printing of textured composites with liquid inclusions. Advanced Science,6(3), 1970018.

    Article  Google Scholar 

  83. 83.

    Verma, A., Tyagi, S., & Kai, Y. (2015). Modeling and optimization of direct metal laser sintering process. The International Journal of Advanced Manufacturing Technology,77(5–8), 847–860.

    Article  Google Scholar 

  84. 84.

    Parthasarathy, J., Starly, B., Raman, S., & Christensen, A. (2010). Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of Biomedical Materials,3(3), 249–259.

    Article  Google Scholar 

  85. 85.

    Russias, J., Cardinal, S., Esnouf, C., Fantozzi, G., & Bienvenu, K. (2007). Hot pressed titanium nitride obtained from SHS starting powders: Influence of a pre-sintering heat-treatment of the starting powders on the densification process. Journal of the European Ceramic Society,27(1), 327–335.

    Article  Google Scholar 

  86. 86.

    Wang, X. C., Laoui, T., Bonse, J., Kruth, J. P., Lauwers, B., & Froyen, L. (2002). Direct selective laser sintering of hard metal powders: experimental study and simulation. International Journal of Advanced Manufacturing Technology,19(5), 351–357.

    Article  Google Scholar 

  87. 87.

    Ganci, M., Zhu, W., Buffa, G., Fratini, L., Bo, S., & Yan, C. (2017). A macroscale FEM-based approach for selective laser sintering of thermoplastics. International Journal of Advanced Manufacturing Technology,91(9–12), 1–12.

    Google Scholar 

  88. 88.

    Zhao, J., Cao, W. B., Li, J. T., Han, Z., Li, Y. H., & Ge, C. C. (2008). Selective laser sintering of Si3N4 and Al2O3 ceramic powders. Key Engineering Materials,368–372, 858–861.

    Article  Google Scholar 

  89. 89.

    Mizuno, J., & Takahashi, S. (2015). A Double-sided in-plane lateral comb-drive actuator fabricated by a plaster-based 3D-printer. Key Engineering Materials,656–657, 594–599.

    Article  Google Scholar 

  90. 90.

    Ma, X. L. (2013). Research on application of SLA technology in the 3D printing technology. Applied Mechanics and Materials,401–403, 938–941.

    Article  Google Scholar 

  91. 91.

    Tyge, E., Pallisgaard, J. J., Lillethorup, M., Hjaltalin, N. G., Thompson, M. K., & Clemmensen, L. H. (2015). Characterizing digital light processing (DLP) 3D printed primitives. Scandinavian Conference on Image Analysis,9127, 302–313.

    Article  Google Scholar 

  92. 92.

    Liao, Y. S., Chiu, L. C., & Chiu, Y. Y. (2003). A new approach of online waste removal process for laminated object manufacturing (LOM). Journal of Materials Processing Technology,140(1–3), 136–140.

    Article  Google Scholar 

  93. 93.

    Prechtl, M., Otto, A., & Geiger, M. (2005). Rapid tooling by laminated object manufacturing of metal foil. Advanced Materials Research,6–8, 303–312.

    Article  Google Scholar 

  94. 94.

    Woodfield, T. B. F., Malda, J., Wijn, J. D., Péters, F., Riesle, J., & Blitterswijk, C. A. V. (2004). Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fibre-deposition technique. Biomaterials,25(18), 4149–4161.

    Article  Google Scholar 

  95. 95.

    Treppo, S., Koepp, H., Quan, E. C., Cole, A. A., Kuettner, K. E., & Grodzinsky, A. J. (2000). Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. Journal of Orthopaedic Research,18(5), 739–748.

    Article  Google Scholar 

  96. 96.

    Eftekhari, A. (2003). 3D Deposition of LiMn2O4: Enhancement of lithium battery performance. Solid State Ionics,161(1–2), 41–47.

    Article  Google Scholar 

  97. 97.

    Xie, J., Harks, P. P. R. M. L., Li, D., Raijmakers, L. H. J., & Notten, P. H. L. (2016). Planar and 3D deposition of Li 4 Ti 5 O 12 thin film electrodes by MOCVD. Solid State Ionics,287, 83–88.

    Article  Google Scholar 

  98. 98.

    Gaal, G., Mendes, M., Almeida, T. P. D., Piazzetta, M. H. O., Gobbi, Â. L., Jr., et al. (2017). Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing. Sensors and Actuators B Chemical,242, 35–40.

    Article  Google Scholar 

  99. 99.

    Choi, J. H., Lee, S., & Lee, J. W. (2017). Non-Newtonian behavior observed via dynamic rheology for various particle types in energetic materials and simulant composites. Korea–Australia Rheology Journal,29(1), 9–15.

    Article  Google Scholar 

  100. 100.

    Russel, W. B., Saville, D. A., & Schowalter, W. R. (1981). Colloidal dispersion. New York: Butterworth-Heinemann Press. (Vol. 37, Vol. 5).

    Google Scholar 

  101. 101.

    Elimelech, M., Jia, X., Gregory, J., & Williams, R. (1998). Particle deposition and aggregation. Particle deposition and aggregation. Cornwall: Cambridge University Press.

    Google Scholar 

  102. 102.

    Shrotri, S., & Somasundaran, P. (1997). Particle deposition and aggregation, measurement, modeling and simulation. Colloids and Surfaces A Physicochemical and Engineering Aspects,125(1), 93–94.

    Article  Google Scholar 

  103. 103.

    Le-Hua, C., Luo, Y. P., Zhou, J., Hou, J. M., Li, X. H., et al. (2012). A novel selection method of scanning step for fabricating metal components based on micro-droplet deposition manufacture. International Journal of Machine Tools and Manufacture,56, 50–58.

    Article  Google Scholar 

  104. 104.

    Liu, Q., Zhang, N., Wei, W., Hu, X., Tan, Y., Yu, Y., et al. (2020). Assessing the dynamic extrusion-based 3D printing process for power-law fluid using numerical simulation. Journal of Food Engineering,275, 109861.

    Article  Google Scholar 

  105. 105.

    Bell, L. (2011). Top-level considerations for planning lunar/planetary habitat structures. Journal of Aerospace Engineering,24(3), 349–360.

    Article  Google Scholar 

  106. 106.

    Nair, G. M., Murthi, K. R. S., & Prasad, M. Y. S. (2008). Strategic, technological and ethical aspects of establishing colonies on Moon and Mars. Acta Astronautica,63(11–12), 1337–1342.

    Article  Google Scholar 

  107. 107.

    Madanchi, N., Zellmer, S., Winter, M., Flach, F., Garnweitner, G., & Herrmann, C. (2019). Investigation on the effects of nanoparticles on cutting fluid properties and tribological characteristics. International Journal of Precision Engineering and Manufacturing-Green Technology,6(3), 433–447.

    Article  Google Scholar 

  108. 108.

    Azman, N. F., & Samion, S. (2019). Dispersion stability and lubrication mechanism of nanolubricants: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,6(2), 393–414.

    Article  Google Scholar 

  109. 109.

    Schneider, F., Das, J., Kirsch, B., Linke, B., & Aurich, J. C. (2019). Sustainability in ultra precision and micro machining: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,6(3), 601–610.

    Article  Google Scholar 

  110. 110.

    Mandal, S., Meininger, S., Gbureck, U., & Basu, B. (2018). 3D powder printed tetracalcium phosphate scaffold with phytic acid binder: fabrication, microstructure and in situ X-Ray tomography analysis of compressive failure. Journal of Materials Science: Materials in Medicine,29(3), 29.

    Google Scholar 

  111. 111.

    Luo, Y., Li, Y., Qin, X., & Wa, Q. (2018). 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Materials and Design,146, 12–19.

    Article  Google Scholar 

  112. 112.

    Kokkinis, D., Bouville, F., & Studart, A. R. (2018). 3D printing of materials with tunable failure via bioinspired mechanical gradients. Advanced Materials,30(19), 1705808.

    Article  Google Scholar 

  113. 113.

    Chang, Y., Shih, Y. J., Lai, C. J., Kung, H. H., & Jiang, S. (2013). Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Advanced Functional Materials,23(9), 1100–1110.

    Article  Google Scholar 

  114. 114.

    Jayathilakage, R., Sanjayan, J., & Rajeev, P. (2019). Direct shear test for the assessment of rheological parameters of concrete for 3D printing applications. Materials and Structures,52(1), 12.

    Article  Google Scholar 

  115. 115.

    Asprone, D., Auricchio, F., Menna, C., & Mercuri, V. (2018). 3D printing of reinforced concrete elements: Technology and design approach. Construction and Building Materials,165, 218–231.

    Article  Google Scholar 

  116. 116.

    Bos, F., Wolfs, R., Ahmed, Z., & Salet, T. (2016). Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping,11(3), 17.

    Article  Google Scholar 

  117. 117.

    Paul, S. C., Zijl, G. P. A. G., Ming, J. T., & Gibson, I. (2018). A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal,24(4), 784–798.

    Google Scholar 

  118. 118.

    Buswell, R. A., Silva, W. R. L. D., Jones, S. Z., & Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research,112, 37–49.

    Article  Google Scholar 

  119. 119.

    Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F., & Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction,21(1), 262–268.

    Article  Google Scholar 

  120. 120.

    Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., & Morel, P. (2016). Large-scale 3D printing of ultra-high performance concrete—a new processing route for architects and builders. Materials & Design,100, 102–109.

    Article  Google Scholar 

  121. 121.

    Khoshnevis, B., & Hwang, D. (2006). Contour crafting. Rapid prototyping (Vol. 6, pp. 221–251). Boston: Springer, MA Press.

    Google Scholar 

  122. 122.

    Perrot, A., Rangeard, D., & Pierre, A. (2016). Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Materials and Structures,49(4), 1213–1220.

    Article  Google Scholar 

  123. 123.

    Rangel, D. P., Superak, C., Bielschowsky, M., Farris, K., Falconer, R. E., & Baveye, P. C. (2013). Rapid prototyping and 3-D printing of experimental equipment in soil science research. Soil Science Society of America Journal,77(1), 54–59.

    Article  Google Scholar 

  124. 124.

    Bosscher, P., Ii, R. L. W., Bryson, L. S., & Castro-Lacouture, D. (2008). Erratum to ‘Cable-suspended robotic contour crafting system. Automation in Construction,17(4), 513.

    Article  Google Scholar 

  125. 125.

    Compton, B. G., & Lewis, J. A. (2014). 3D printing: 3D-printing of lightweight cellular composites. Advanced Materials,26(34), 6043.

    Article  Google Scholar 

  126. 126.

    Kading, B., & Straub, J. (2015). Utilizing in-situ resources and 3D printing structures for a manned Mars mission. Acta Astronautica,107, 317–326.

    Article  Google Scholar 

  127. 127.

    O'Neill, S. J. (2015). 3D print a home on Mars. New scientist,226(3023), 27–27.

    Article  Google Scholar 

  128. 128.

    Cesaretti, G., Dini, E., Kestelier, X. D., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica,93(1), 430–450.

    Article  Google Scholar 

  129. 129.

    Hasiuk, F., & Harding, C. (2016). Touchable topography: 3D printing elevation data and structural models to overcome the issue of scale. Geology Today,32(1), 16–20.

    Article  Google Scholar 

  130. 130.

    Zhang, H., Moon, S. K., & Ngo, T. H. (2020). 3D printed electronics of non-contact ink writing techniques: status and promise. International Journal of Precision Engineering and Manufacturing-Green Technology,7(2), 511–524.

    Article  Google Scholar 

  131. 131.

    Sullivan, K. T., Zhu, C., Tanaka, D. J., Kuntz, J. D., Duoss, E. B., & Gash, A. E. (2013). Electrophoretic deposition of thermites onto micro-engineered electrodes prepared by direct-ink writing. Journal of Physical Chemistry B,117(6), 1686–1693.

    Article  Google Scholar 

  132. 132.

    Chen, B., Jiang, Y., Tang, X., Pan, Y., & Hu, S. (2017). Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. Acs Applied Materials and Interfaces,9(34), 28433–28440.

    Article  Google Scholar 

  133. 133.

    Yang, J., Wang, J., Wang, D., Li, X., Geng, D., Liang, G., et al. (2012). 3D porous LiFePO 4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. Journal of Power Sources,208(2), 340–344.

    Article  Google Scholar 

  134. 134.

    Wang, G., Bei, W., Wang, X., Park, J., & Kim, K. (2009). Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry,19(44), 8378–8384.

    Article  Google Scholar 

  135. 135.

    Fu, K., Wang, Y., Yan, C., Yao, Y., Chen, Y., Dai, J., et al. (2016). Graphene oxide-based electrode inks for 3D-printed lithium–ion batteries. Advanced Materials,28(13), 2587–2594.

    Article  Google Scholar 

  136. 136.

    Shen, C., Wang, X., Zhang, W., & Kang, F. (2011). A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials. Journal of Power Sources,196(23), 10465–10471.

    Article  Google Scholar 

  137. 137.

    Yu, W., Zhou, H., Li, B. Q., & Ding, S. (2017). 3D printing of carbon nanotubes-based microsupercapacitors. Acs Applied Materials Interfaces,9(5), 4597–4604.

    Article  Google Scholar 

  138. 138.

    Nyström, G., Marais, A., Karabulut, E., Wågberg, L., Cui, Y., & Hamedi, M. M. (2015). Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nature Communications,6, 7259.

    Article  Google Scholar 

  139. 139.

    Di, Z., Chi, B., Li, B., Gao, Z., Yao, D., Guo, J., et al. (2016). Fabrication of highly conductive graphene flexible circuits by 3D printing. Synthetic Metals,217, 79–86.

    Article  Google Scholar 

  140. 140.

    Wang, M., Zhang, S., Song, Y., Dong, J., Wei, H., Xie, H., et al. (2016). Fabrication of light, flexible and multifunctional graphene nanoribbon fibres via a 3D solution printing method. Nanotechnology,27(46), 465702.

    Article  Google Scholar 

  141. 141.

    Huang, Z. X., Wang, Y., Zhu, Y. G., Shi, Y., Wong, J. I., & Yang, H. Y. (2014). 3D graphene supported MoO2 for high performance binder-free lithium ion battery. Nanoscale,6(16), 9839–9845.

    Article  Google Scholar 

  142. 142.

    Lacey, S. D., Kirsch, D. J., Li, Y., Morgenstern, J. T., Zarket, B. C., Yao, Y., et al. (2018). Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Advanced Materials,30(12), 1705651.

    Article  Google Scholar 

  143. 143.

    Wang, R., Zhu, P., Yang, W., Gao, S., Li, B., & Li, Q. (2018). Direct-writing of 3D periodic TiO2 bio-ceramic scaffolds with a sol–gel ink for in vitro cell growth. Materials & Design,144, 304–309.

    Article  Google Scholar 

  144. 144.

    Ji, S., Dube, K., Chesterman, J. P., Fung, S. L., & Guvendiren, M. (2019). Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Biomaterials Science,7(2), 560–570.

    Article  Google Scholar 

  145. 145.

    Nguyen, C. H. P., Kim, Y., & Choi, Y. (2019). Design for additive manufacturing of functionally graded lattice structures: A design method with process induced anisotropy consideration. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00173-7.

    Article  Google Scholar 

  146. 146.

    Zocca, A., Franchin, G., Elsayed, H., Gioffredi, E., Bernardo, E., & Colombo, P. (2016). Direct ink writing of a preceramic polymer and fillers to produce hardystonite (Ca2ZnSi2O7) bioceramic scaffolds. Journal of the American Ceramic Society,99(6), 1960–1967.

    Article  Google Scholar 

  147. 147.

    Skalka, P., Slámečka, K., Montufar, E. B., & Čelko, L. (2019). Estimation of the effective elastic constants of bone scaffolds fabricated by direct ink writing. Journal of the European Ceramic Society,39(4), 1586–1594.

    Article  Google Scholar 

  148. 148.

    Shkarina, S., Shkarin, R., Weinhardt, V., Melnik, E., Vacun, G., Kluger, P. J., et al. (2018). 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study. Scientific Reports,8(1), 8907.

    Article  Google Scholar 

  149. 149.

    Maji, S., Agarwal, T., Das, J., & Maiti, T. K. (2018). Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications. Carbohydrate Polymers,189, 115–125.

    Article  Google Scholar 

  150. 150.

    Kim, B.-S., Yang, S.-S., & Kim, C. S. (2018). Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids and Surfaces B: Biointerfaces,170, 421–429.

    Article  Google Scholar 

  151. 151.

    Tayebi, L., Rasoulianboroujeni, M., Moharamzadeh, K., Almela, T. K. D., Cui, Z., & Ye, H. (2018). 3D-printed membrane for guided tissue regeneration. Materials Science and Engineering C,84, 148–158.

    Article  Google Scholar 

  152. 152.

    Yan, Y., Xiong, Z., Hu, Y., Wang, S., Zhang, R., & Zhang, C. (2003). Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Materials Letters,57(18), 2623–2628.

    Article  Google Scholar 

Download references

Acknowledgements

The authors also gratefully acknowledge the financial support from National Natural Science Foundation of China (No. 51675496, No. 51671091, No. 51902295) and China Scholarship Council.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Danna Tang or Yan Li.

Ethics declarations

Conflict of Interest

All the authors declare that they have no conflict of interest.

Ethical Approval

This chapter do not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Additional informed consent was obtained from all individual participants from whom identifying information is included in this chapter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Tang, D., Sun, T. et al. Direct Ink Writing of Mineral Materials: A review. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2020). https://doi.org/10.1007/s40684-020-00222-6

Download citation

Keywords

  • Additive manufacturing
  • Slurry deposition
  • Mineral materials
  • Physical and chemical properties
  • Processing methods