Skip to main content
Log in

Flexible Energy Harvester with Piezoelectric and Thermoelectric Hybrid Mechanisms for Sustainable Harvesting

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this paper, we present a flexible hybrid energy harvester for single- or multi-source energy collection. To increase harvesting power, piezoelectric and thermoelectric conversions are used simultaneously. The piezoelectric portion of the harvester collects energy from low-frequency kinetic motion using frequency up-conversion. The thermoelectric part is suitable for harvesting energy from a curved surface, thanks to its flexibility. By harvesting from two different energy sources (kinetic and thermal), the harvester allows for sustainable energy harvesting. The average power density obtained was 28.57 and 0.64 μW/cm2 by piezoelectric and thermoelectric conversion, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, X., Niu, S., Yi, F., Yin, Y., Hao, C., Dai, K., et al. (2017). Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano, 11, 1728–1735.

    Article  Google Scholar 

  2. Zhou, S., Cao, J., Wang, W., Liu, S., & Lin, J. (2015). Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration. Smart Materials and Structures, 24, 055008. (13 pp).

    Article  Google Scholar 

  3. Wang, W., Cao, J., Bowen, C. R., Zhou, S., & Lin, J. (2017). Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions. Energy, 118, 221–230.

    Article  Google Scholar 

  4. Kim, J. E., Kim, H., Yoon, H., Kim, Y. Y., & Youn, B. D. (2015). An energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(1), 51–57.

    Article  Google Scholar 

  5. Sun, X., Wang, F., & Xu, J. (2019). Nonlinear piezoelectric structure for ultralow-frequency band vibration energy harvesting with magnetic interaction. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–9.

  6. Veri, C., Francioso, L., Pasca, M., Pascali, C. D., Siciliano, P., & D’Amico, S. (2016). An 80 mV startup voltage fully electrical DC–DC converter for flexible thermoelectric generators. IEEE Sensors Journal, 16(8), 2735–2745.

    Article  Google Scholar 

  7. Zhang, B., Sun, J., Katz, H. E., Fang, F., & Opilaia, R. L. (2010). Promising thermoelectric properties of commercial PEDOT:PSS materails and their Bi2Te3 powder composites. ACS Applied Materials & Interfaces, 2(11), 3170–3178.

    Article  Google Scholar 

  8. Kirihara, K., Wei, Q., Mukaida, M., & Ishida, T. (2017). Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT:PSS. Synthetic Metals, 225, 41–48.

    Article  Google Scholar 

  9. Atalay, T., Köysal, Y., Özdemir, A. E., & Özbaş, E. (2018). Evaluation of energy efficiency of thermoelectric generator with two-phase thermo-syphon heat pipes and nano-particle fluids. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 5–12.

    Article  Google Scholar 

  10. Wang, F., & Hansen, O. (2014). Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sensors and Actuators A, 211, 131–137.

    Article  Google Scholar 

  11. Fan, F.-R., Tian, Z.-Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano Energy, 1, 328–334.

    Article  Google Scholar 

  12. Eun, Y., Kwon, D.-S., Kim, M.-O., Yoo, I., Sim, J., Ko, H.-J., et al. (2014). A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion. Smart Materials and Structures, 23, 045040. (6 pp).

    Article  Google Scholar 

  13. Hamid, R., & Yuce, M. R. (2017). A wearable energy harvester unit using piezoelectric-electromagnetic hybrid technique. Sensor and Actuators A, 257, 198–207.

    Article  Google Scholar 

  14. Ko, Y. J., Kim, D. Y., Won, S. S., Ahn, C. W., Kim, I. W., Kingon, A. I., et al. (2016). Flexible Pb(Zr0.52Ti0.48)O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Applied Materials & Interfaces, 8, 6504–6511.

    Article  Google Scholar 

  15. Collado, A., & Georgiadis, A. (2013). Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(8), 2225–2234.

    Article  Google Scholar 

  16. Yang, Y., Zhang, H., Zhu, G., Lee, S., Lin, Z.-H., & Wang, Z. L. (2012). Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano, 7(1), 785–790.

    Article  Google Scholar 

  17. Lee, S., Bae, S.-H., Lin, L., Ahn, S., Park, C., Kim, S.-W., et al. (2013). Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies. Nano Energy, 2, 817–825.

    Article  Google Scholar 

  18. Montgomery, D. S., Hewitt, C. A., & Carroll, D. L. (2016). Hybrid thermoelectric piezoelectric generator. Applied Physics Letters, 108, 263901.

    Article  Google Scholar 

  19. Park, J. H., Lim, T. W., Kim, S. D., & Park, S. H. (2016). Design and experimental verification of flexible plate-type piezoelectric vibrator for energy harvesting system. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(3), 253–259.

    Article  Google Scholar 

  20. Kwon, D.-S., Ko, H.-J., Kim, M.-O., Oh, Y., Sim, J., Lee, K., et al. (2014). Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation. Applied Physics Letters, 104, 113904.

    Article  Google Scholar 

  21. Madan, D., Chen, A., Wright, P. K., & Evans, J. W. (2012). Printed se-doped MA n-Type Bi2Te3 thick-film thermoelectric generators. Journal of Electronic Materials, 41, 1481–1486.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. NRF-2018R1A2A1A05023070, 2018R1A4A1025986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongbaeg Kim.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y., Kwon, DS., Eun, Y. et al. Flexible Energy Harvester with Piezoelectric and Thermoelectric Hybrid Mechanisms for Sustainable Harvesting. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 691–698 (2019). https://doi.org/10.1007/s40684-019-00132-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00132-2

Keywords

Navigation