Skip to main content
Log in

Nonlinear Piezoelectric Structure for Ultralow-frequency Band Vibration Energy Harvesting with Magnetic Interaction

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In order to realize the energy harvesting structure working for an external perturbation or ultralow-frequency excitation, a continuous structure with adjustable nonlinearity is proposed and analyzed. The novel energy harvesting structure is consisted of a piezoelectric elastic beam and two pairs of magnets. Different from normal assembly of magnets in the same direction of the vibration motion, two pairs of magnets are assembled vertically to the vibration direction to induce adjustable nonlinear restoring force similar as the pre-deformed elastic components in so-called quasi-zero-stiffness system. With the model of magnets, the interaction energy and interaction force are obtained. Considering the the piezoelectric cantilever beam, it can realize a multi-stable vibration structure. The zero equilibrium is stable and the interaction energy there is very high, while there are two symmetry stable equilibriums with very low interaction energy. Thus, for small-amplitude and ultralow-frequency excitations from natural phenomenon such as dropping raining, the structure can have large-amplitude vibration with adjustable output frequency. At last, we realize the proposed vibration energy harvester by designing the structural according to the theoretical analysis. The structure of this study has potentially remarkable applications in intelligent and sustainable power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

L :

Then length of cantilever beam

A :

Length of magnet on mass in x-direction

B :

Length of magnet on mass in y-direction

C :

Thickness of magnet on mass

a :

Length of magnet on base in x-direction

b :

Length of magnet on base in y-direction

c :

Thickness of magnet on base

d :

Distances in one-pair of magnets

J :

Magnetizations

μ :

Permeability of intervening medium

References

  1. Babayo, A. A., Anisi, M. H., & Ali, I. (2017). A Review on energy management schemes in energy harvesting wireless sensor networks. Renewable and Sustainable Energy Reviews, 76, 1176–1184.

    Article  Google Scholar 

  2. Zi, Y., Lin, L., Wang, J., Wang, S., Chen, J., Fan, X., et al. (2015). Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Advanced Materials, 27(14), 2340–2347.

    Article  Google Scholar 

  3. Allane, D., Vera, G. A., Duroc, Y., Touhami, R., & Tedjini, S. (2016). Harmonic power harvesting system for passive RFID sensor tags. IEEE Transactions on Microwave Theory, 64(7), 2347–2356.

    Article  Google Scholar 

  4. Le, C. P., Halvorsen, E., Søråsen, O., & Yeatman, E. M. (2012). Microscale electrostatic energy harvester using internal impacts. Journal of Intelligent Material Systems and Structures, 23(13), 1409–1421.

    Article  Google Scholar 

  5. Khaligh, A., Zeng, P., & Zheng, C. (2010). Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Transactions on Industrial Electronics, 57(3), 850–860.

    Article  Google Scholar 

  6. Kim, H. S., Kim, J. H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12(6), 1129–1141.

    Article  Google Scholar 

  7. Mori, K., Horibe, T., Ishikawa, S., Shindo, Y., & Narita, F. (2015). Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning. Smart Materials and Structures, 24, 12.

    Article  Google Scholar 

  8. Fan, F. R., Tang, W., & Wang, Z. L. (2016). Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Advanced Materials, 28(22), 4283–4305.

    Article  Google Scholar 

  9. Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: modelling and realization. Renewable and Sustainable Energy Reviews, 74, 1–18.

    Article  Google Scholar 

  10. Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14, 1629–1635.

    Article  Google Scholar 

  11. Kim, H. S., Kim, J. H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12, 1129–1141.

    Article  Google Scholar 

  12. Kim, C., & Shin, J. W. (2013). Topology optimization of piezoelectric materials and application to the cantilever beams for vibration energy harvesting. International Journal of Precision Engineering and Manufacturing, 14, 1925–1931.

    Article  Google Scholar 

  13. Abas, Z., Kim, H. S., Zhai, L., & Kim, J. (2015). Experimental study of vibrational energy harvesting using Electro-Active paper. International Journal of Precision Engineering and Manufacturing, 16, 1187–1193.

    Article  Google Scholar 

  14. Pillai, M. A., & Deenadayalan, E. (2014). A review of acoustic energy harvesting. International Journal of Precision Engineering and Manufacturing, 15, 949965.

    Article  Google Scholar 

  15. Truitt, A., & Mahmoodi, S. N. (2013). A review on active wind energy harvesting designs. International Journal of Precision Engineering and Manufacturing, 14, 1667–1675.

    Article  Google Scholar 

  16. Priya, S., & Inman, D. J. (2009). Energy harvesting technologies. New York: Springer.

    Book  Google Scholar 

  17. Li, H., Tian, C., & Deng, Z. D. (2014). Energy harvesting from low frequency applications using piezoelectric materials”. Applied Physics Reviews, 1, 4.

    Google Scholar 

  18. Alamiana, R., Shafaghata, R., Hosseinia, S. S., & Zainalib, A. (2017). Wave energy potential along the southern coast of the Caspian Sea. International Journal of Marine Energy, 19, 221–234.

    Article  Google Scholar 

  19. Xin, Y., Li, X., Tian, H., Guo, C., Qian, C., Wang, S., et al. (2016). Shoes-equipped piezoelectric transducer for energy harvesting: a brief review. Ferroelectrics, 493(1), 12–24.

    Article  Google Scholar 

  20. Donelan, J. M., Li, Q., Naing, V., Hoffer, J. A., Webe, D. J., & Kuo, A. D. (2008). Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science, 319, 807.

    Article  Google Scholar 

  21. Xie, X. D., & Wang, Q. (2015). Energy harvesting from a vehicle suspension system. Energy, 86, 385–392.

    Article  Google Scholar 

  22. Tianchen, Y., Jian, Y., Ruigang, S., & Xiaowei, L. (2014). Vibration energy harvesting system for railroad safety based on running vehicles. Smart Materials and Structures, 23, 12.

    Article  Google Scholar 

  23. Sazonov, E., Li, H., Curry, D., & Pillay, P. (2009). Self-powered sensors for monitoring of highway bridges. IEEE Sensors Journal, 9(11), 1422–1429.

    Article  Google Scholar 

  24. Xie, X. D., Wang, Q., & Wang, S. J. (2015). Energy harvesting from high-rise buildings by a piezoelectric harvester device. Energy, 93, 1345–1352.

    Article  Google Scholar 

  25. Jeon, J., Hong, J., Lee, S. J., & Chung, S. K. (2019). Acoustically excited oscillating bubble on a flexible structure and its energy-harvesting capability. International Journal of Precision Engineering and Manufacturing, 5, 1–7.

    Google Scholar 

  26. Park, J. H., Lim, T. W., Kim, S. D., & Park, S. H. (2016). Design and experimental verification of flexible plate-type piezoelectric vibrator for energy harvesting system. International Journal of Precision Engineering and Manufacturing, 3, 253–259.

    Article  Google Scholar 

  27. Kim, J. E., Kim, H., Yoon, H., et al. (2015). An Energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters”. International Journal of Precision Engineering and Manufacturing, 2, 51–57.

    Article  Google Scholar 

  28. Usharani, R., & Uma, G. Umapathy. (2016). Design of high output broadband piezoelectric energy harvester with double tapered cavity beam. International Journal of Precision Engineering and Manufacturing, 3, 343–351.

    Article  Google Scholar 

  29. Ahmed, A., Hassan, I., Hedaya, M., El-Yazid, T. A., Zu, J., & Wang, Z. L. (2017). Farms of triboelectric nanogenerators for harvesting wind energy: a potential approach towards green energy. Nano Energy, 36, 21–29.

    Article  Google Scholar 

  30. Ilyas, M. A., & Swingler, J. (2015). Piezoelectric energy harvesting from raindrop impacts. Energy, 90, 796–806.

    Article  Google Scholar 

  31. Leadenham, S., & Erturk, A. (2014). M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation. Journal of Sound and Vibration, 333(23), 6209–6223.

    Article  Google Scholar 

  32. Fan, K., Tan, Q., Zhang, Y., et al. (2018). A monostable piezoelectric energy harvester for broadband low-level excitations. Applied Physics Letters, 112(12), 123901.

    Article  Google Scholar 

  33. Chen, L., Jiang, W., Panyam, M., & Daqaq, M. (2016). A broadband internally resonant vibratory energy harvester. Journal of Vibration and Acoustics, 138, 6.

    Google Scholar 

  34. Wang, F., Sun, X., & Xu, J. (2018). A novel energy harvesting device for ultralow frequency excitation. Energy, 151, 250–260.

    Article  Google Scholar 

  35. Xueping, X., Chunlong, Z., Qinkai, H., & Fulei, C. (2018). Hybrid energy harvesting from mechanical vibrations and magnetic field. Applied Physics Letters, 113, 1.

    Google Scholar 

  36. Zhou, S., Cao, J., Inman, D. J., Lin, J., Liu, S., & Wang, Z. (2014). Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 133, 33–39.

    Article  Google Scholar 

  37. Zheng, W., Yan, B., Ma, H., Wang, R., Jia, J., & Zhang, L. (2019). Tuning of natural frequency with electromagnetic shunt mass. Smart Materials and Structures, 28, 025026.

    Article  Google Scholar 

  38. Nguyen, M. S., Yoon, Y. J., Kwon, O., & Kim, P. (2017). Lowering the potential barrier of a bistable energy harvester with mechanically rectified motion of an auxiliary magnet oscillator. Applied Physics Letters, 111, 25.

    Google Scholar 

  39. Kim, P., Nguyen, M. S., Kwon, O., Kim, Y. J., & Yoon, Y. J. (2016). Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester. Scientific Reports, 6, 34411.

    Article  Google Scholar 

  40. Akoun, G., & Yonnet, J. P. (1984). 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Transactions on Magnetics, 20, 1962–1964.

    Article  Google Scholar 

  41. Allag, H., & Yonnet, J. P. (2011). 3-D Analytical calculation of the torque and force exerted between two cuboidal magnets. IEEE Transactions on Magnetics, 109, 199–216.

    Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support from the National Natural Science Foundation of China under Grant no. 11772229 and no. 11602141, Shanghai Sailing Program no. 16YF1408000, Natural Science Foundation of Shanghai No. 16ZR1423600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wang, F. & Xu, J. Nonlinear Piezoelectric Structure for Ultralow-frequency Band Vibration Energy Harvesting with Magnetic Interaction. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 671–679 (2019). https://doi.org/10.1007/s40684-019-00117-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00117-1

Keywords

Navigation