Skip to main content
Log in

Material Removal Mechanisms of Cu–Co Metal-Powder Composite by Microorganisms

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Material characteristics of pure copper, pure cobalt and Cu–Co metal-powder composite were comparative studied through biomachining by Acidithiobacillus ferrooxidans (A. ferrooxidans) in three groups of culture solutions. Material removal mechanisms of Cu–Co metal-powder composite involved in biomachining were explored. It was first observed that the pure cobalt and Cu–Co metal-powder composite were machined by the A. ferrooxidans. The material removal of three workpieces presented linear increase along the machining process due to the metabolic activity of the A. ferrooxidans. Different with the pure metal, the material removal mechanism of Cu–Co metal-powder is explained by the dual effect of micro-galvanic corrosion and participation of Cu2+ and Fe3+ for oxidization of cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A. ferrooxidans :

Acidithiobacillus ferrooxidans

ΔE0 :

Standard reduction potential of demi-reaction

References

  1. Diaz-Tena, E., Barona, A., Gallastegui, G., Rodriguez, A., Lopez, D. L. L., & Elias, A. (2017). Biomachining: Metal etching via microorganisms. Critical Reviews in Biotechnology, 37, 323–332.

    Article  Google Scholar 

  2. Muhammad, I., Sana Ullah, S. M., Han, D. S., & Ko, T. J. (2015). Selection of optimum process parameters of biomachining for maximum metal removal rate. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 307–313.

    Article  Google Scholar 

  3. Muhammad, I., Khatoon, T., Ullah, S. M. S., & Ko, T. J. (2018). Development of empirical model for biomachining to improve machinability and surface roughness of polycrystalline copper. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 201–209.

    Article  Google Scholar 

  4. Díaz-Tena, E., Gallastegui, G., Hipperdinger, M., Donati, E. R., & Ramírez, M. (2016). New advances in copper biomachining by iron-oxidizing bacteria. Corrosion Science, 112, 385–392.

    Article  Google Scholar 

  5. Díaz-Tena, E., Rojo, N., Gurtubay, L., Rodríguez-Ezquerro, A., López De Lacalle, L. N., Oyanguren, I., et al. (2017). Biomachining: Preservation of Acidithiobacillus Ferrooxidans and treatment of the liquid residue. Engineering in Life Sciences, 17, 382–391.

    Article  Google Scholar 

  6. Uno, Y., Kaneeda, T., & Yokomizo, S. (1996). Fundamental study on biomachining (Machining of Metals by Thiobacillus Ferrooxidans). JSME International Journal Ser C, 39, 837–842.

    Google Scholar 

  7. Zhang, D. Y., & Li, Y. Q. (1998). Possibility of biological micromachining used for metal removal. Science in China, Series C: Life Sciences, 41, 151–156.

    Article  Google Scholar 

  8. Lilova, K., Karamanev, D., Flemming, R. L., & Karamaneva, T. (2007). Biological oxidation of metallic copper by Acidithiobacillus Ferrooxidans. Biotechnology and Bioengineering, 97, 308–316.

    Article  Google Scholar 

  9. Liu, Y. D., Wang, X. B., Yang, Y., & Shi, W. T. (2009). Processing micro-gear based on bio-etching method. Applied Mechanics and Materials, 16–19, 120–123.

    Article  Google Scholar 

  10. Istiyanto, J., Saragih, A., & Ko, T. J. (2012). Metal based micro-feature fabrication using biomachining process. Microelectronic Engineering, 98, 561–565.

    Article  Google Scholar 

  11. Díaz-Tena, E., Rodríguez-Ezquerro, A., De Lacalle, López, Marcaide, L. N., Gurtubay Bustinduy, L., & Elías Sáenz, A. (2014). A sustainable process for material removal on pure copper by use of extremophile bacteria. Journal of Cleaner Production, 84, 752–760.

    Article  Google Scholar 

  12. Jadhav, U. U., Hocheng, H., & Weng, W. (2013). Innovative use of biologically produced ferric sulfate for machining of copper metal and study of specific metal removal rate and surface roughness during the process. Journal of Materials Processing Technology, 213, 1509–1515.

    Article  Google Scholar 

  13. Hocheng, H., Chang, J. H., Hsu, H. S., Han, H. J., Chang, Y. L., & Jadhav, U. U. (2012). Metal removal by acidithiobacillus ferrooxidans through cells and extra-cellular culture supernatant in biomachining. CIRP Journal of Manufacturing Science and Technology, 5, 137–141.

    Article  Google Scholar 

  14. Hocheng, H., Chang, J., & Jadhav, U. U. (2012). Micromachining of Various Metals by Using Acidithiobacillus Ferrooxidans 13820 Culture Supernatant Experiments. Journal of Cleaner Production, 20, 180–185.

    Article  Google Scholar 

  15. Hocheng, H., Jadhav, U. U., & Chang, J. H. (2012). Biomachining rates of various metals by Acidithiobacillus Thiooxidans. International Journal of Surface Science and Engineering, 6, 101–111.

    Article  Google Scholar 

  16. Chang, J. H., Hocheng, H., Chang, H. Y., & Shih, A. (2008). Metal removal rate of Thiobacillus Thiooxidans without pre-secreted metabolite. Journal of Materials Processing Technology, 201, 560–564.

    Article  Google Scholar 

  17. Silverman, M. P., & Lundgren, D. G. (1959). Studies on the chemoautotrophic iron bacterium FERROBACILLUS FERROOXIDANS I.: An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology, 77, 642–647.

    Article  Google Scholar 

  18. Yun, H. G., Kim, M., Kang, M. G., & Lee, I. H. (2012). Cost-effective dye-sensitized solar cells consisting of two metal foils instead of transparent conductive oxide glass. Physical Chemistry Chemical Physics, 14, 6448–6451.

    Article  Google Scholar 

  19. Vidal-Iglesias, F. J., Solla-Gullón, J., Rodes, A., Herrero, E., & Aldaz, A. (2012). Understanding the nernst equation and other electrochemical concepts: An easy experimental approach for students. Journal of Chemical Education, 89, 936–939.

    Article  Google Scholar 

  20. May, N., Ralph, D. E., & Hansford, G. S. (1997). Dynamic redox potential measurement for determining the ferric leach kinetics of pyrite. Minerals Engineering, 10, 1279–1290.

    Article  Google Scholar 

  21. Della Rovere, C. A., Alano, J. H., Silva, R., Nascente, P. A. P., & Otubo, J. (2012). Kuri SE characterization of passive films on shape memory stainless steels. Corrosion Science, 57, 154–161.

    Article  Google Scholar 

  22. Lambert, F., Gaydardzhiev, S., Léonard, G., Lewis, G., Bareel, P., & Bastin, D. (2015). Copper leaching from waste electric cables by biohydrometallurgy. Minerals Engineering, 76, 38–46.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the East China University of Technology for supplying the culture of A. ferrooxidans.

Funding

The authors would like to thank the financial supports from the National Natural Science Foundation of China (Grant Nos. 51235004 and 51375179) and Science and Technology Projects of Fujian Province (2017H6014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Huang, H. & Xu, X. Material Removal Mechanisms of Cu–Co Metal-Powder Composite by Microorganisms. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 975–986 (2020). https://doi.org/10.1007/s40684-019-00110-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00110-8

Keywords

Navigation