Effect of Sintering Process with Co3O4 on the Performance of LSCF-Based Cathodes for Solid Oxide Fuel Cells

  • Sanchit Khurana
  • Sean Johnson
  • Alireza Karimaghaloo
  • Min Hwan LeeEmail author
Regular Paper


The impact of the sintering process, especially in terms of sintering temperature and sintering aid concentration, on the ohmic transport and electrode performance of (La0.80Sr0.20)0.95CoO3–δ–gadolinia-doped ceria (LSCF-GDC) cathodes is studied. The ohmic and charge-transfer kinetics exhibit a highly coupled Co3O4 concentration dependency, showing the best performances at an optimum range of 4–5 wt%. This is ascribed to small grain sizes and improved connection between particles. The addition of Co3O4 was also found to have a dominant impact on charge-transfer kinetics in the LSCF-GDC composite layer and a moderate impact on the electronic transport in the current-collecting LSCF layer. Care should be taken to avoid a formation of excessive thermal stresses between layers when adding Co3O4.


Solid oxide fuel cell LSCF Cathode Sintering aid Cobalt oxide Electrochemical impedance spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weber, A. and Ivers-Tiffée, E., “Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications,” Journal of Power Sources, Vol. 127, Nos. 1–2, pp. 273–283, 2004.CrossRefGoogle Scholar
  2. 2.
    Shao, Z. and Haile, S. M., “A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells,” in: Materials for Sustainable Energy, Dusastre, V., (Ed.), World Scientific, pp. 255–258, 2011.Google Scholar
  3. 3.
    Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G., and Barnett, S. A., “A Perspective on Low-Temperature Solid Oxide Fuel Cells,” Energy & Environmental Science, Vol. 9, No. 5, pp. 1602–1644, 2016.CrossRefGoogle Scholar
  4. 4.
    Brett, D. J., Atkinson, A., Brandon, N. P., and Skinner, S. J., “Intermediate Temperature Solid Oxide Fuel Cells,” Chemical Society Reviews, Vol. 37, No. 8, pp. 1568–1578, 2008.CrossRefGoogle Scholar
  5. 5.
    Tucker, M. C., “Progress in Metal-Supported Solid Oxide Fuel Cells: A Review,” Journal of Power Sources, Vol. 195, No. 15, pp. 4570–4582, 2010.CrossRefGoogle Scholar
  6. 6.
    Wachsman, E. D. and Lee, K. T., “Lowering the Temperature of Solid Oxide Fuel Cells,” Science, Vol. 334, No. 6058, pp. 935–939, 2011.CrossRefGoogle Scholar
  7. 7.
    Ji, S., Ha, J., Park, T., Kim, Y., Koo, B., et al., “Substrate-Dependent Growth of Nanothin Film Solid Oxide Fuel Cells Toward Cost-Effective Nanostructuring,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 1, pp. 35–39, 2016.CrossRefGoogle Scholar
  8. 8.
    Gostovic, D., Smith, Z. J., Kundinger, D., Jones, K., and Wachsman, E., “Three-Dimensional Reconstruction of Porous LSCF Cathodes,” Electrochemical and Solid-State Letters, Vol. 10, No. 12, pp. B214–B217, 2007.CrossRefGoogle Scholar
  9. 9.
    Leone, P., Santarelli, M., Asinari, P., Calì, M., and Borchiellini, R., “Experimental Investigations of the Microscopic Features and Polarization Limiting Factors of Planar SOFCs with LSM and LSCF Cathodes,” Journal of Power Sources, Vol. 177, No. 1, pp. 111–122, 2008.CrossRefGoogle Scholar
  10. 10.
    Murray, E. P., Sever, M., and Barnett, S., “Electrochemical Performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 Composite Cathodes,” Solid State Ionics, Vol. 148, Nos. 1–2, pp. 27–34, 2002.CrossRefGoogle Scholar
  11. 11.
    Steele, B. C. and Bae, J.-M., “Properties of La0.6Sr0.4Co0.2Fe0.8O3-x (LSCF) Double Layer Cathodes on Gadolinium-Doped Cerium Oxide (CGO) Electrolytes: Ii. Role of Oxygen Exchange and Diffusion,” Solid State Ionics, Vol. 106, Nos. 3–4, pp. 255–261, 1998.CrossRefGoogle Scholar
  12. 12.
    Armstrong, E., Duncan, K., Oh, D., Weaver, J., and Wachsman, E., “Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes,” Journal of The Electrochemical Society, Vol. 158, No. 5, pp. B492–B499, 2011.CrossRefGoogle Scholar
  13. 13.
    Yu, W., Lee, Y., Lee, Y. H., Cho, G. Y., Park, T., et al., “Performance Enhancement of Thin Film LSCF Cathodes by Gold Current Collecting Layer,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 2, pp. 185–188, 2016.CrossRefGoogle Scholar
  14. 14.
    Leng, Y., Chan, S. H., and Liu, Q., “Development of LSCF-GDC Composite Cathodes for Low-Temperature Solid Oxide Fuel Cells with Thin Film GDC Electrolyte,” International Journal of Hydrogen Energy, Vol. 33, No. 14, pp. 3808–3817, 2008.CrossRefGoogle Scholar
  15. 15.
    Choi, H., Cho, G. Y., and Cha, S.-W., “Fabrication and Characterization of Anode Supported YSZ/GDC Bilayer Electrolyte SOFC Using Dry Press Process,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 1, No. 2, pp. 95–99, 2014.CrossRefGoogle Scholar
  16. 16.
    Simner, S. P., Anderson, M. D., Coleman, J. E., and Stevenson, J. W., “Performance of a Novel La(Sr)Fe(Co)O3-Ag SOFC Cathode,” Journal of Power Sources, Vol. 161, No. 1, pp. 115–122, 2006.CrossRefGoogle Scholar
  17. 17.
    Qiang, F., Sun, K., Zhang, N., Le, S., Zhu, X., et al., “Optimization on Fabrication and Performance of A-Site-Deficient La0.58Sr0.4Co0.2Fe0.8O3-δ Cathode for SOFC,” Journal of Solid State Electrochemistry, Vol. 13, No. 3, pp. 455–467, 2009.CrossRefGoogle Scholar
  18. 18.
    Jiang, S., “Issues on Development of (La,Sr)MnO3 Cathode for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 124, No. 2, pp. 390–402, 2003.CrossRefGoogle Scholar
  19. 19.
    Gong, Y., Ji, W., Zhang, L., Xie, B., and Wang, H., “Performance of (La,Sr)MnO3 Cathode Based Solid Oxide Fuel Cells: Effect of Bismuth Oxide Sintering Aid in Silver Paste Cathode Current Collector,” Journal of Power Sources, Vol. 196, No. 3, pp. 928–934, 2011.CrossRefGoogle Scholar
  20. 20.
    Liu, W., Zhao, Z., Tu, B., Cui, D., Ou, D., et al., “TiO2-Modified La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode for Intermediate Temperature Solid Oxide Fuel Cells,” Chinese Journal of Catalysis, Vol. 36, No. 4, pp. 502–508, 2015.CrossRefGoogle Scholar
  21. 21.
    Chen, D., Wang, F., and Shao, Z., “Interlayer-Free Electrodes for It-Sofcs by Applying Co3O4 as Sintering Aid,” International Journal of Hydrogen Energy, Vol. 37, No. 16, pp. 11946–11954, 2012.CrossRefGoogle Scholar
  22. 22.
    Dusastre, V. and Kilner, J., “Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications,” Solid State Ionics, Vol. 126, Nos. 1–2, pp. 163–174, 1999.CrossRefGoogle Scholar
  23. 23.
    Kleinlogel, C. and Gauckler, L., “Mixed Electronic-Ionic Conductivity of Cobalt Doped Cerium Gadolinium Oxide,” Journal of Electroceramics, Vol. 5, No. 3, pp. 231–243, 2000.CrossRefGoogle Scholar
  24. 24.
    Qi, X., Lin, Y., and Swartz, S., “Electric Transport and Oxygen Permeation Properties of Lanthanum Cobaltite Membranes Synthesized by Different Methods,” Industrial & Engineering Chemistry Research, Vol. 39, No. 3, pp. 646–653, 2000.CrossRefGoogle Scholar
  25. 25.
    Stevenson, J., Armstrong, T., Carneim, R., Pederson, L. R., and Weber, W., “Electrochemical Properties of Mixed Conducting Perovskites La(1-x)M(x)Co(1-y)Fe(y)O(3-δ) (M=Sr,Ba,Ca),” Journal of the Electrochemical Society, Vol. 143, No. 9, pp. 2722–2729, 1996.CrossRefGoogle Scholar
  26. 26.
    Zhang, H. and Yang, W., “Highly Efficient Electrocatalysts for Oxygen Reduction Reaction,” Chemical Communications, No. 41, pp. 4215–4217, 2007.CrossRefGoogle Scholar
  27. 27.
    Gaur, A. and Sglavo, V. M., “Flash Sintering of (La, Sr)(Co, Fe)O3-Gd-Doped CeO2 Composite,” Journal of the American Ceramic Society, Vol. 98, No. 6, pp. 1747–1752, 2015.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California MercedMercedUSA

Personalised recommendations