Advertisement

Joining and fabrication of metal matrix composites by friction stir welding/processing

  • Hrishikesh Das
  • Mounarik Mondal
  • Sung-Tae Hong
  • Doo-Man Chun
  • Heung Nam Han
Regular Paper

Abstract

Herein, friction stir welding (FSW) of metal matrix composites (MMCs) with different combinations of the reinforcement and the metal matrix is highlighted with a brief introduction into recent efforts that have been used to fabricate MMCs by FSW. As a solid state joining technique, FSW consumes significantly lower energy than conventional fusion welding processes. In addition to properly selecting the process parameters, the mechanical properties of the FSW joints of MMCs are closely related with the refinement and homogeneous distribution of reinforcements in the stir zone. The fatigue and fracture properties of MMCs may be enhanced or aggravated by FSW, depending on the combination of the reinforcement and the metal matrix. For FSW of MMCs, the selection of the tool material can also be a critical issue; the presence of hard reinforcements may increase the rate of tool wear. Macro-and microstructural phenomena for MMCs during FSW depend on the material flow due to plasticization and the behavior of the reinforcements. Even though FSW are generally expected to induce a homogeneous distribution of reinforcements in the stir zone (SZ), it can be difficult to obtain a homogeneous distribution of reinforcements in the SZ depending on the combination of the reinforcement and the metal matrix. The existence of reinforcements naturally affects the microstructure of the joint and can even induce the formation of intermetallics/complex phases in the joint. This review provides a general understanding of the joining or in-situ fabrication of MMCs using solid-state friction stirring.

Keywords

Friction stir welding Metal matrix composites Mechanical properties Microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosso, M., “Ceramic and Metal Matrix Composites: Routes and Properties,” Journal of Materials Processing Technology, Vol. 175, No. 1, pp. 364–375, 2006.CrossRefGoogle Scholar
  2. 2.
    Kunze, J. M. and Bampton, C. C., “Challenges to Developing and Producing MMCs for Space Applications,” Journal of the Minerals, Metals and Materials Society, Vol. 53, No. 4, pp. 22–25, 2001.CrossRefGoogle Scholar
  3. 3.
    Pakkanen, J., Huetter, A., Poletti, C., Enzinger, N., Sommitsch, C., et al., “Friction Stir Welding of Aluminum Metal Matrix Composite Containers for Electric Components,” Key Engineering Materials, Vols. 611-612, pp. 1445–1451, 2014.CrossRefGoogle Scholar
  4. 4.
    Rino, J. J., Ch, D., and Sucitharan, K., “An Overview on Development of Aluminium Metal Matrix Composites with Hybrid Reinforcement,” Vol. 1, No. 3, pp. 2319–7064, 2012.Google Scholar
  5. 5.
    Çam, G. and Koçak, M., “Progress in Joining of Advanced Materials,” International Materials Reviews, Vol. 43, No. 1, pp. 1–44, 1998.CrossRefGoogle Scholar
  6. 6.
    Hassan, A. M., Almomani, M., Qasim, T., and Ghaithan, A., “Effect of Processing Parameters on Friction Stir Welded Aluminum Matrix Composites Wear Behavior,” Materials and Manufacturing Processes, Vol. 27, No. 12, pp. 1419–1423, 2012.CrossRefGoogle Scholar
  7. 7.
    Suryanarayanan, K., Praveen, R., and Raghuraman, S., “Silicon Carbide Reinforced Aluminium Metal Matrix Composites for Aerospace Applications: A Literature Review,” International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, No. 11, pp. 6336–6344, 2013.Google Scholar
  8. 8.
    Dige, P., “Metal Matrix Composites Market Review: for Ground Transportation, Electronics/Thermal Management, Aerospace and Other End-Users,” https://www.linkedin.com/pulse/20140605070839 -173774513-metal-matrix-composites-market-review (Accessed 22 DEC 2017)Google Scholar
  9. 9.
    Niu, J., Luo, X., Tian, H., and Brnic, J., “Vacuum Brazing of Aluminium Metal Matrix Composite (55vol.% SiCp/A356) Using Aluminium-Based Filler Alloy,” Materials Science and Engineering: B, Vol. 177, No. 19, pp. 1707–1711, 2012.CrossRefGoogle Scholar
  10. 10.
    Li, Y., Leng, X., Cheng, S., and Yan, J., “Microstructure Design and Dissolution Behavior between 2024 Al/Sn with the Ultrasonic-Associated Soldering,” Materials & Design, Vol. 40, pp. 427–432, 2012.CrossRefGoogle Scholar
  11. 11.
    Xu, Z., Yan, J., Wu, G., Kong, X., and Yang, S., “Interface Structure and Strength of Ultrasonic Vibration Liquid Phase Bonded Joints of Al2O3p/6061 Al Composites,” Scripta Materialia, Vol. 53, No. 7, pp. 835–839, 2005.CrossRefGoogle Scholar
  12. 12.
    Cook, G. O. and Sorensen, C. D., “Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding,” Journal of Materials Science, Vol. 46, No. 16, pp. 5305–5323, 2011.CrossRefGoogle Scholar
  13. 13.
    Askew, J., Wilde, J., and Khan, T., “Transient Liquid Phase Bonding of 2124 Aluminium Metal Matrix Composite,” Materials Science and Technology, Vol. 14, Nos. 9-10, pp. 920–924, 1998.CrossRefGoogle Scholar
  14. 14.
    Li, Z., Fearis, W., and North, T., “Particulate Segregation and Mechanical Properties in Transient Liquid Phase Bonded Metal Matrix Composite Material,” Materials Science and Technology, Vol. 11, No. 4, pp. 363–369, 1995.CrossRefGoogle Scholar
  15. 15.
    Storjohann, D., Barabash, O., David, S., Sklad, P., Bloom, E., et al., “Fusion and Friction Stir Welding of Aluminum-Metal-Matrix Composites,” Metallurgical and Materials Transactions A, Vol. 36, No. 11, pp. 3237–3247, 2005.CrossRefGoogle Scholar
  16. 16.
    Niu, J., Pan, L., Wang, M., Fu, C., and Meng, X., “Research on Laser Welding of Aluminum Matrix Composite SiCw/6061,” Vacuum, Vol. 80, No. 11, pp. 1396–1399, 2006.CrossRefGoogle Scholar
  17. 17.
    Bassani, P., Capello, E., Colombo, D., Previtali, B., and Vedani, M., “Effect of Process Parameters on Bead Properties of A359/SiC MMCs Welded by Laser,” Composites Part A: Applied Science and Manufacturing,” Vol. 38, No. 4, pp. 1089–1098, 2007.CrossRefGoogle Scholar
  18. 18.
    Kun, P., Cui, H.-C., Lu, F.-G., Wu, X.-M., Tang, X.-H., et al., “Mechanical Properties and Wear Resistance of Aluminum Composite Welded by Electron Beam,” Transactions of Nonferrous Metals Society of China, Vol. 21, No. 9, pp. 1925–1931, 2011.CrossRefGoogle Scholar
  19. 19.
    Garcia, R., Lopez, V., Bedolla, E., and Manzano, A., “A Comparative Study of the MIG Welding of Ai/TiC Composites Using Direct and Indirect Electric Arc Processes,” Journal of Materials Science, Vol. 38, No. 12, pp. 2771–2779, 2003.CrossRefGoogle Scholar
  20. 20.
    Przelozynska, E., Braszczynska-Malika, K., and Mróz, M., “Structure of MMCs with SiC Particles After Gas-Tungsten Arc Welding,” Archives of Foundry Engineering, Vol. 15, No. 4, pp. 65–68, 2015.CrossRefGoogle Scholar
  21. 21.
    Hersh, M., “Resistance Spot Welding of Metal Matrix Composite,” Welding Research Supplement, pp. 254–258, 1970.Google Scholar
  22. 22.
    Lee, J, A., Carter, R. W., Ding, J., “Friction Stir Welding for Aluminum Metal Matrix Composites: (MMC’s) (MSFC Center Director's Discretionary Fund Final Report, Project No.98-09),” NASA Technical Reports Server, TM-1999-209876, 1990.Google Scholar
  23. 23.
    Mishra, R. S. and Ma, Z. Y., “Friction Stir Welding and Processing,” Materials Science and Engineering: R: Reports, Vol. 50, No. 1, pp. 1–78, 2005.CrossRefGoogle Scholar
  24. 24.
    Salih, O. S., Ou, H., Sun, W. M., Dg, C., “A Review of Friction Stir Welding of Aluminum Matrix Composites,” Materials Science and Engineering: R: Reports, Vol. 50, No. 1, pp. 1–78, 2005.Google Scholar
  25. 25.
    Thomas, W., Nicholas, E., Needham, J., Murch, M., Temple-Smith, P., et al., “Friction Welding,” US Patent, 5460317 A, 1991.Google Scholar
  26. 26.
    Su, J.-Q., Nelson, T., Mishra, R., and Mahoney, M., “Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium,” Acta Materialia, Vol. 51, No. 3, pp. 713–729, 2003.CrossRefGoogle Scholar
  27. 27.
    Rhodes, C., Mahoney, M., Bingel, W., Spurling, R., and Bampton, C., “Effects of Friction Stir Welding on Microstructure of 7075 Aluminum,” Scripta Materialia, Vol. 36, No. 1, pp. 69–75, 1997.CrossRefGoogle Scholar
  28. 28.
    Liu, G., Murr, L., Niou, C., McClure, J., and Vega, F., “Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum,” Scripta Materialia, Vol. 37, No. 3, pp. 355–361, 1997.CrossRefGoogle Scholar
  29. 29.
    Sato, Y. S., Kokawa, H., Enomoto, M., Jogan, S., and Hashimoto, T., “Precipitation Sequence in Friction Stir Weld of 6063 Aluminum during Aging,” Metallurgical and Materials Transactions A, Vol. 30, No. 12, pp. 3125–3130, 1999.CrossRefGoogle Scholar
  30. 30.
    Jata, K. V. and Semiatin, S. L., “Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminium Alloys,” Scripta Materialia, Vol. 43, No. 8, pp. 743–749, 2000.CrossRefGoogle Scholar
  31. 31.
    Benavides, S., Li, Y., Murr, L., Brown, D., and McClure, J., “Low-Temperature Friction-Stir Welding of 2024 Aluminum,” Scripta Materialia, Vol. 41, No. 8, pp. 809–815, 1999.CrossRefGoogle Scholar
  32. 32.
    Peel, M., Steuwer, A., Preuss, M., and Withers, P., “Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds,” Acta Materialia, Vol. 51, No. 16, pp. 4791–4801, 2003.CrossRefGoogle Scholar
  33. 33.
    Reynolds, A. P., Lockwood, W., and Seidel, T., “Processing-Property Correlation in Friction Stir Welds,” Materials Science Forum, pp. 1719–1724, 2000.Google Scholar
  34. 34.
    Liu, H., Fujii, H., Maeda, M., and Nogi, K., “Tensile Properties and Fracture Locations of Friction-Stir-Welded Joints of 2017-T351 Aluminum Alloy,” Journal of Materials Processing Technology, Vol. 142, No. 3, pp. 692–696, 2003.CrossRefGoogle Scholar
  35. 35.
    Yang, B., Yan, J., Sutton, M. A., and Reynolds, A. P., “Banded Microstructure in AA2024-T351 and AA2524-T351 Aluminum Friction Stir Welds: Part I. Metallurgical Studies,” Materials Science and Engineering: A, Vol. 364, No. 1, pp. 55–65, 2004.CrossRefGoogle Scholar
  36. 36.
    Jata, K., “Friction Stir Welding of High Strength Aluminum Alloys,” Materials Science Forum, pp. 1701–1712, 2000.Google Scholar
  37. 37.
    Elangovan, K. and Balasubramanian, V., “Influences of Pin Profile and Rotational Speed of the Tool on the Formation of Friction Stir Processing Zone in AA2219 Aluminium Alloy,” Materials Science and Engineering: A, Vol. 459, No. 1, pp. 7–18, 2007.CrossRefGoogle Scholar
  38. 38.
    Lumsden, J. B., Mahoney, M. W., Rhodes, C. G., and Pollock, G. A., “Corrosion Behavior of FSW 7050-T7651,” Corrosion Science, Vol. 59, No. 3, pp. 212–219, 2003.CrossRefGoogle Scholar
  39. 39.
    Gupta, R. K., Das, H., and Pal, T. K., “Influence of Processing Parameters on Induced Energy, Mechanical and Corrosion Properties of FSW Butt Joint of 7475 AA,” Journal of Materials Engineering and Performance, Vol. 21, No. 8, pp. 1645–1654, 2012.CrossRefGoogle Scholar
  40. 40.
    Kim, J.-R., Ahn, E.-Y., Das, H., Jeong, Y.-H., Hong, S.-T., et al., “Effect of Tool Geometry and Process Parameters on Mechanical Properties of Friction Stir Spot Welded Dissimilar Aluminum Alloys,” Int. J. Precis. Eng. Manuf., Vol. 18, No. 3, pp. 445–452, 2017.CrossRefGoogle Scholar
  41. 41.
    Chowdhury, S., Chen, D., Bhole, S., Cao, X., and Wanjara, P., “Friction Stir Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Tensile Properties,” Metallurgical and Materials Transactions A, Vol. 44, No. 1, pp. 323–336, 2013.CrossRefGoogle Scholar
  42. 42.
    Sunil, B. R., Reddy, G. P. K., Mounika, A., Sree, P. N., Pinneswari, P. R., et al., “Joining of AZ31 and AZ91 Mg Alloys by Friction Stir Welding,” Journal of Magnesium and Alloys, Vol. 3, No. 4, pp. 330–334, 2015.CrossRefGoogle Scholar
  43. 43.
    Cao, X. and Jahazi, M., “Effect of Welding Speed on Lap Joint Quality of Friction Stir Welded AZ31 Magnesium Alloy,” Proc. of the 8th International Conference on Trends in Welding Research, 2009.Google Scholar
  44. 44.
    Cao, X. and Jahazi, M., “Effect of Tool Rotational Speed and Probe Length on Lap Joint Quality of a Friction Stir Welded Magnesium Alloy,” Materials & Design, Vol. 32, No. 1, pp. 1–11, 2011.CrossRefGoogle Scholar
  45. 45.
    Singh, I., Cheema, G. S., and Kang, A. S., “An Experimental Approach to Study the Effect of Welding Parameters on Similar Friction Stir Welded Joints of AZ31B-O Mg Alloy,” Procedia Engineering, Vol. 97, pp. 837–846, 2014.CrossRefGoogle Scholar
  46. 46.
    Sevvel, P. and Jaiganesh, V., “Improving the Mechanical Properties of Friction Stir Welded AZ31B Magnesium Alloy Flat Plates through Axial Force Investigation,” Applied Mechanics and Materials, pp. 11–14, 2014.Google Scholar
  47. 47.
    Darras, B., Khraisheh, M., Abu-Farha, F., and Omar, M., “Friction Stir Processing of Commercial AZ31 Magnesium Alloy,” Journal of Materials Processing Technology, Vol. 191, No. 1, pp. 77–81, 2007.CrossRefGoogle Scholar
  48. 48.
    Afrin, N., Chen, D., Cao, X., and Jahazi, M., “Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy,” Scripta Materialia, Vol. 57, No. 11, pp. 1004–1007, 2007.CrossRefGoogle Scholar
  49. 49.
    Chowdhury, S., Chen, D., Bhole, S., and Cao, X., “Tensile Properties of a Friction Stir Welded Magnesium Alloy: Effect of Pin Tool Thread Orientation and Weld Pitch,” Materials Science and Engineering: A, Vol. 527, No. 21, pp. 6064–6075, 2010.CrossRefGoogle Scholar
  50. 50.
    Commin, L., Dumont, M., Rotinat, R., Pierron, F., Masse, J.-E., et al., “Influence of the Microstructural Changes and Induced Residual Stresses on Tensile Properties of Wrought Magnesium Alloy Friction Stir Welds,” Materials Science and Engineering: A, Vol. 551, pp. 288–292, 2012.CrossRefGoogle Scholar
  51. 51.
    Chowdhury, S., Chen, D., Bhole, S., Cao, X., and Wanjara, P., “Lap Shear Strength and Fatigue Life of Friction Stir Spot Welded AZ31 Magnesium and 5754 Aluminum Alloys,” Materials Science and Engineering: A, Vol. 556, pp. 500–509, 2012.CrossRefGoogle Scholar
  52. 52.
    Liu, D., Xin, R., Zheng, X., Zhou, Z., and Liu, Q., “Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Mg Alloys of ZK60-AZ31,” Materials Science and Engineering: A, Vol. 561, pp. 419–426, 2013.CrossRefGoogle Scholar
  53. 53.
    Lee, W.-B. and Jung, S.-B., “The Joint Properties of Copper by Friction Stir Welding,” Materials Letters, Vol. 58, No. 6, pp. 1041–1046, 2004.CrossRefGoogle Scholar
  54. 54.
    Liu, H., Shen, J., Huang, Y., Kuang, L., Liu, C., et al., “Effect of Tool Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Welded Copper,” Science and Technology of welding and Joining, Vol. 14, No. 6, pp. 577–583, 2009.CrossRefGoogle Scholar
  55. 55.
    Xie, G., Ma, Z., and Geng, L., “Development of a Fine-Grained Microstructure and the Properties of a Nugget Zone in Friction Stir Welded Pure Copper,” Scripta Materialia, Vol. 57, No. 2, pp. 73–76, 2007.CrossRefGoogle Scholar
  56. 56.
    Nakata, K., “Friction Stir Welding of Copper and Copper Alloys,” Welding International, Vol. 19, No. 12, pp. 929–933, 2005.CrossRefGoogle Scholar
  57. 57.
    Okamoto, K., Doi, M., Hirano, S., Aota, K., Okamura, H., et al., “Fabrication of Backing Plates of Copper Alloy by Friction Stir Welding,” Proc. of 3rd International Symposium on Friction Stir Welding, 2001.Google Scholar
  58. 58.
    Sakthivel, T. and Mukhopadhyay, J., “Microstructure and Mechanical Properties of Friction Stir Welded Copper,” Journal of Materials Science, Vol. 42, No. 19, pp. 8126–8129, 2007.CrossRefGoogle Scholar
  59. 59.
    Shen, J., Liu, H., and Cui, F., “Effect of Welding Speed on Microstructure and Mechanical Properties of Friction Stir Welded Copper,” Materials & Design, Vol. 31, No. 8, pp. 3937–3942, 2010.CrossRefGoogle Scholar
  60. 60.
    Mishra, R. S. and Ma, Z., “Friction Stir Welding and Processing,” Materials Science and Engineering: R: Reports, Vol. 50, No. 1, pp. 1–78, 2005.CrossRefGoogle Scholar
  61. 61.
    Sato, Y. S., Nagahama, Y., Mironov, S., Kokawa, H., Park, S. H. C., et al., “Microstructural Studies of Friction stir Welded Zircaloy-4,” Scripta Materialia, Vol. 67, No. 3, pp. 241–244, 2012.CrossRefGoogle Scholar
  62. 62.
    Fujii, H., Sun, Y., and Kato, H., “Microstructure and Mechanical Properties of Friction Stir Welded Pure Mo Joints,” Scripta Materialia, Vol. 64, No. 7, pp. 657–660, 2011.CrossRefGoogle Scholar
  63. 63.
    Simar, A. and Avettand-Fènoël, M. -N., “Friction Stir Processing for Architectured Materials,” 2016.Google Scholar
  64. 64.
    Avettand-Fènoël, M.-N. and Simar, A., “A Review about Friction Stir Welding of Metal Matrix Composites,” Materials Characterization, Vol. 120, pp. 1–17, 2016.CrossRefGoogle Scholar
  65. 65.
    Salih, O. S., Ou, H., Sun, W., and McCartney, D., “A Review of Friction Stir Welding of Aluminium Matrix Composites,” Materials & Design, Vol. 86, pp. 61–71, 2015.CrossRefGoogle Scholar
  66. 66.
    Nandan, R., DebRoy, T., and Bhadeshia, H., “Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties,” Progress in Materials Science, Vol. 53, No. 6, pp. 980–1023, 2008.CrossRefGoogle Scholar
  67. 67.
    Wang, D., Xiao, B., Ni, D., and Ma, Z., “Friction Stir Welding of Discontinuously Reinforced Aluminum Matrix Composites: A Review,” Acta Metallurgica, Vol. 27, No. 5, pp. 816–824, 2014.Google Scholar
  68. 68.
    Ramnath, B. V., Elanchezhian, C., Annamalai, R., Aravind, S., Atreya, T. S. A., et al., “Aluminium Metal Matrix Composites-A Review,” Review on Advanced Materials Science, Vol. 38, No. 5, pp. 55–60, 2014.Google Scholar
  69. 69.
    Sharifitabar, M., Sarani, A., Khorshahian, S., and Afarani, M. S., “Fabrication of 5052Al/Al2O3 Nanoceramic Particle Reinforced Composite via Friction Stir Processing Route,” Materials & Design, Vol. 32, No. 8, pp. 4164–4172, 2011.CrossRefGoogle Scholar
  70. 70.
    Barmouz, M. and Givi, M. K. B., “Fabrication of in Situ Cu/SiC Composites Using Multi-Pass Friction Stir Processing: Evaluation of Microstructural, Porosity, Mechanical and Electrical Behavior,” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 10, pp. 1445–1453, 2011.CrossRefGoogle Scholar
  71. 71.
    Barmouz, M., Givi, M. K. B., and Seyfi, J., “On the Role of Processing Parameters in Producing Cu/SiC Metal Matrix Composites via Friction Stir Processing: Investigating Microstructure, Microhardness, Wear and Tensile Behavior,” Materials Characterization, Vol. 62, No. 1, pp. 108–117, 2011.CrossRefGoogle Scholar
  72. 72.
    Alidokht, S., Abdollah-Zadeh, A., Soleymani, S., and Assadi, H., “Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing,” Materials & Design, Vol. 32, No. 5, pp. 2727–2733, 2011.CrossRefGoogle Scholar
  73. 73.
    Khayyamin, D., Mostafapour, A., and Keshmiri, R., “The Effect of Process Parameters on Microstructural Characteristics of AZ91/SiO2 Composite Fabricated by FSP,” Materials Science and Engineering: A, Vol. 559, pp. 217–221, 2013.CrossRefGoogle Scholar
  74. 74.
    Lee, J. A., Carter, R. W., Ding, J., “Friction Stir Welding for Metal Matrix Composites (MMC’s), MSFC Center Director’s Discretionary Fund Final Report,” Project No. 98-09, NASA/TM-1999-209876, 1999.Google Scholar
  75. 75.
    Johannes, L. B., Yowell, L. L., Sosa, E., Arepalli, S., and Mishra, R. S., “Survivability of Single-Walled Carbon Nanotubes during Friction Stir Processing,” Nanotechnology, Vol. 17, No. 12, pp. 3081–3084, 2006.CrossRefGoogle Scholar
  76. 76.
    Morisada, Y., Fujii, H., Nagaoka, T., and Fukusumi, M., “MWCNTs/AZ31 Surface Composites Fabricated by Friction Stir Processing,” Materials Science and Engineering: A, Vol. 419, No. 1, pp. 344–348, 2006.CrossRefGoogle Scholar
  77. 77.
    Mishra, R. S., Ma, Z., and Charit, I., “Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite,” Materials Science and Engineering: A, Vol. 341, No. 1, pp. 307–310, 2003.CrossRefGoogle Scholar
  78. 78.
    Jeon, C.-S., Jeong, Y.-H., Hong, S.-T., Hasan, M. T., Tien, H. N., et al., “Mechanical Properties of Graphite/Aluminum Metal Matrix Composite Joints by Friction Stir Spot Welding,” Journal of Mechanical Science and Technology, Vol. 28, No. 2, pp. 499–504, 2014.CrossRefGoogle Scholar
  79. 79.
    Jeon, C.-H., Jeong, Y.-H., Seo, J.-J., Tien, H. N., Hong, S.-T., et al., “Material Properties of Graphene/Aluminum Metal Matrix Composites Fabricated by Friction Stir Processing,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1235–1239, 2014.CrossRefGoogle Scholar
  80. 80.
    Hong, S.-T., Das, H., Oh, H.-S., Al Nasim, M. N. E. A., and Chun, D.-M., “Combination of Nano-Particle Deposition System and Friction Stir Spot Welding for Fabrication of Carbon/Aluminum Metal Matrix Composite Joints of Dissimilar Aluminum Alloys,” CIRP Annals-Manufacturing Technology, Vol. 66, No. 1, pp. 261–264, 2017.CrossRefGoogle Scholar
  81. 81.
    Kumar, B. A. and Murugan, N., “Optimization of Friction Stir Welding Process Parameters to Maximize Tensile Strength of Stir Cast AA6061-T6/ALNp Composite,” Materials & Design, Vol. 57, pp. 383–393, 2014.CrossRefGoogle Scholar
  82. 82.
    Abenojar, J., Velasco, F., and Martinez, M., “Optimization of Processing Parameters for the Al+10% B4C System Obtained by Mechanical Alloying,” Journal of Materials Processing Technology, Vol. 184, No. 1, pp. 441–446, 2007.CrossRefGoogle Scholar
  83. 83.
    Murugan, N. and Kumar, B. A., “Prediction of Tensile Strength of Friction Stir Welded Stir Cast AA6061-T6/ALNp Composite,” Materials & Design, Vol. 51, pp. 998–1007, 2013.CrossRefGoogle Scholar
  84. 84.
    Kalaiselvan, K. and Murugan, N., “Optimizations of Friction Stir Welding Process Parameters for the Welding of Al-B4C Composite Plates Using Generalized Reduced Gradient Method,” Procedia Engineering, Vol. 38, pp. 49–55, 2012.CrossRefGoogle Scholar
  85. 85.
    Gopalakrishnan, S. and Murugan, N., “Prediction of Tensile Strength of Friction Stir Welded Aluminium Matrix TiCp Particulate Reinforced Composite,” Materials & Design, Vol. 32, No. 1, pp. 462–467, 2011.CrossRefGoogle Scholar
  86. 86.
    Kalaiselvan, K. and Murugan, N., “Role of Friction Stir Welding Parameters on Tensile Strength of AA6061-B4C Composite Joints,” Transactions of Nonferrous Metals Society of China, Vol. 23, No. 3, pp. 616–624, 2013.CrossRefGoogle Scholar
  87. 87.
    Kumar, A., Mahapatra, M., Jha, P., Mandal, N., and Devuri, V., “Influence of Tool Geometries and Process Variables on Friction Stir Butt Welding of Al-4.5%Cu/TiC in Situ Metal Matrix Composites,” Materials & Design, Vol. 59, pp. 406–414, 2014.CrossRefGoogle Scholar
  88. 88.
    Devanathan, C. and Babu, A. S., “Friction Stir Welding of Metal Matrix Composite Using Coated Tool,” Procedia Materials Science, Vol. 6, pp. 1470–1475, 2014.CrossRefGoogle Scholar
  89. 89.
    Devanathan, C. and Babu, A. S., “Friction Stir Welding of Metal Matrix Composite Using Coated Tool,” Procedia Materials Science, Vol. 6, pp. 1470–1475, 2014.CrossRefGoogle Scholar
  90. 90.
    Periyasamy, P., Mohan, B., Balasubramanian, V., Rajakumar, S., and Venugopal, S., “Multi-Objective Optimization of Friction Stir Welding Parameters Using Desirability Approach to Join Al/SiCp Metal Matrix Composites,” Transactions of Nonferrous Metals Society of China, Vol. 23, No. 4, pp. 942–955, 2013.CrossRefGoogle Scholar
  91. 91.
    Babu, N. K., Kallip, K., Leparoux, M., AlOgab, K. A., Reddy, G., et al., “Characterization of Microstructure and Mechanical Properties of Friction Stir Welded AlMg5-Al2O3 Nanocomposites,” Materials Science and Engineering: A, Vol. 658, pp. 109–122, 2016.CrossRefGoogle Scholar
  92. 92.
    Wang, J., Yuan, W., Mishra, R. S., and Charit, I., “Microstructural Evolution and Mechanical Properties of Friction Stir Welded ODS Alloy MA754,” Journal of Nuclear Materials, Vol. 442, No. 1, pp. 1–6, 2013.Google Scholar
  93. 93.
    Marzoli, L. M., Strombeck, A. V., Dos Santos, J. F., Gambaro, C., and Volpone, L. M., “Friction Stir Welding of an AA6061/Al2O3/ 20p Reinforced Alloy,” Composites Science and Technology, Vol. 66, No. 2, pp. 363–371, 2006.CrossRefGoogle Scholar
  94. 94.
    Feng, A. H. and Ma, Z. Y., “Formation of Cu2FeAl7 Phase in Friction Stir Welded SiCp/Al-Cu-Mg Composite,” Scripta Materialia, Vol. 57, pp. 1113–1116, 2007.CrossRefGoogle Scholar
  95. 95.
    Ni, D. R., Chen, D. L., Wang, D., Xiao, B. L., and Ma, Z. Y., “Influence of Microstructural Evolution on Tensile Properties of Friction Stir Welded Joint of Rolled SiCp/AA2009-T351 Sheet,” Materials & Design, Vol. 51, No. 7, pp. 199–205, 2013.CrossRefGoogle Scholar
  96. 96.
    Vijay, S. J. and Murugan, N., “Influence of Tool Pin Profile on the Metallurgical and Mechanical Properties of Friction Stir Welded Al-10wt.% TiB2 Metalmatrix Composite,” Materials & Design, Vol. 31, pp. 3585–3589, 2012.CrossRefGoogle Scholar
  97. 97.
    Wang, J., Yuan, W., Mishra, R. S., and Charit, I., “An Evaluation of Creep Behaviour in Friction Stir Welded MA754 Alloy,” Journal of Materials Engineering and Performance, Vol. 23, pp. 3159–3164, 2014.CrossRefGoogle Scholar
  98. 98.
    Feng, A. H., Xiao, B. L., and Ma, Z. Y., “Effect of Microstructural Evolution on Mechanical Properties of Friction Stir Welded AA2009/SiCp Composite,” Composites Science and Technology, Vol. 68, No. 9, pp. 2141–2148, 2008.CrossRefGoogle Scholar
  99. 99.
    Kalaiselvan, K., Dinaharan, I., and Murugan, N., “Characterization of Friction Stir Welded Boron Carbide Particulate Reinforced AA6061 Aluminum Alloy Stir Cast Composite,” Materials & Design, Vol. 55, pp. 176–182, 2014.CrossRefGoogle Scholar
  100. 100.
    Ni, D. R., Chen, D. L., Xiao, B. L., Wang, D., and Ma, Z. Y., “Residual Stresses and High Cycle Fatigue Properties of Friction Stir Welded SiCp/AA2009 Composites,” International Journal of Fatigue, Vol. 55, pp. 64–73, 2013.CrossRefGoogle Scholar
  101. 101.
    Dinaharan, I. and Murugan, N., “Effect of Friction Stir Welding on Microstructure, Mechanical and Wear Properties of AA6061/ZrB2 in situ Cast Composites,” Materials Science and Engineering: A, Vol. 543, pp. 257–266, 2012.CrossRefGoogle Scholar
  102. 102.
    Yabuuchi, K., Tsuda, N., Kimura, A., Morisada, Y., Fujii, H., et al., “Effects of Tool Rotation Speed on the Mechanical Properties and Microstructure of Friction Stir Welded ODS Steel,” Materials Science and Engineering: A, Vol. 595, pp. 291–296, 2014.CrossRefGoogle Scholar
  103. 103.
    Liu, H., Hu, Y., Zhao, Y., and Fujii, H., “Microstructure and Mechanical Properties of Friction Stir Welded AC4A+30vol.% SiCp Composite,” Materials & Design, Vol. 65, pp. 395–400, 2015.CrossRefGoogle Scholar
  104. 104.
    Minak, G., Ceschini, L., Boromei, I., and Ponte, M., “Fatigue Properties of Friction Stir Welded Particulate Reinforced Aluminium Matrix Composites,” International Journal of Fatigue, Vol. 32, No. 1, pp. 218–226, 2010.CrossRefGoogle Scholar
  105. 105.
    Wang, D., Wang, Q. Z., Xiao, B. L., and Ma, Z. Y., “Achieving Friction Stir Welded SiCp/Al-Cu-Mg Composite Joint of Nearly Equal Strength to Base Material at High Welding Speed,” Materials Science and Engineering: A, Vol. 589, pp. 271–274, 2014.CrossRefGoogle Scholar
  106. 106.
    Cavalière, P., Cerri, E., Marzoli, L., and Dos Santos, J., “Friction Stir Welding of Ceramic Particle Reinforced Aluminium Based Metal Matrix Composites,” Applied Composite Materials, Vol. 11, No. 4, pp. 247–258, 2004.CrossRefGoogle Scholar
  107. 107.
    Ceschini, L., Boromei, I., Minak, G., Morri, A., and Tarterini, F., “Effect of Friction Stir Welding on Microstructure, Tensile and Fatigue Properties of the AA7005/10 vol.% Al2O3p Composite,” Composites Science and Technology, Vol. 67, Nos. 3-4, pp. 605–615, 2007.CrossRefGoogle Scholar
  108. 108.
    Chen, T., Zhu, Z., Ma, Y., Li, Y., Hao, Y., et al., “Friction Stir Processing of Thixoformed AZ91D Magnesium Alloy and Fabrication of Surface Composite Reinforced by SiCps,” Journal of Wuhan University of Technology-Materials Science Edition, pp. 223–227, 2010.Google Scholar
  109. 109.
    Wang, J., Yuan, W., Mishra, R. S., and Charit, I., “Microstructure and Mechanical Properties of Friction Stir Welded Oxide Dispersion Strengthened Alloy,” Journal of Nuclear Materials, Vol. 432, Nos. 1-3, pp. 274–280, 2013.CrossRefGoogle Scholar
  110. 110.
    Feng, A. H., Xiao, B. L., and Ma, Z. Y., “Grain Boundary Misorientation and Texture Development in Friction Stir Welded SiCp/Al-Cu-Mg Composite,” Materials Science and Engineering: A, Vol. 497, pp. 515–518, 2008.CrossRefGoogle Scholar
  111. 111.
    Packer, S. M., Steel, R. J., Nelson, T. W., and Mahoney, M., “Tool Geometries and Process Parameters Required to Friction Stir Weld High Melting Temperature Materials,” Proc. of 5th International Conference Offshore and Polar Engineering, 2005.Google Scholar
  112. 112.
    Chen, X. G., Silva, M. D., Gougeon, P., and St Georges, L., “Microstructure and Mechanical Properties of Friction Stir Welded AA6063-B4C Metal Matrix Composites,” Materials Science and Engineering: A, Vol. 518, Nos. 1-2, pp. 174–184, 2009.CrossRefGoogle Scholar
  113. 113.
    Lee, W. B., Lee, C. Y., Kim, M. K., Yoon, J. I., Kim, Y. J., et al., “Microstructures and Wear Property of Friction Stir Welded AZ91 Mg/SiC Particle Reinforced Composite,” Composites Science and Technology, Vol. 66, pp. 1513–1520, 2006.CrossRefGoogle Scholar
  114. 114.
    Fernandez, G. J. and Murr, L. E., “Characterization of Tool Wear and Weld Optimization in the Friction Stir Welding of Cast Aluminium 359 + 20%SiC Metal-Matrix Composite,” Materials Characterization, Vol. 52, pp. 65–75, 2004.CrossRefGoogle Scholar
  115. 115.
    Nami, H., Adgi, H., Sharifitabar, M., and Shamabadi, H., “Microstructure and Mechanical Properties of Friction Stir Welded Al/Mg2Si Metal Matrix Composite,” Materials & Design, Vol. 32, No. 2, pp. 976–983, 2011.CrossRefGoogle Scholar
  116. 116.
    Yigezu, B. S., Venkateswarlu, D., Mahapatra, M. M., Jha, P. K., and Mandal, N. R., “On Friction Stir Butt Welding of Al+12Si/10wt.% TiC in situ Composite,” Materials & Design, Vol. 54, pp. 1019–1027, 2014.CrossRefGoogle Scholar
  117. 117.
    Kumar, A., Mahapatra, M. M., Jha, P. K., Mandal, N. R., and Devuri, V., “Influence of Tool Geometries and Process Variables on Friction Stir Butt Welding of Al-4.5%Cu/TiC in situ Metal Matrix Composites,” Materials & Design, Vol. 59, pp. 406–414, 2014.CrossRefGoogle Scholar
  118. 118.
    Wang, D., Xiao, B. L., Wang, Q. Z., and Ma, Z. Y., “Evolution of the Microstructure and Strength in the Nugget Zone of Friction Stir Welded SiCp/Al-Cu-Mg Composite,” Journal of Materials Science & Technology, Vol. 30, No. 1, pp. 54–60, 2014.CrossRefGoogle Scholar
  119. 119.
    Sun, Y. F. and Fujii, H., “The Effect of SiC Particles on the Microstructure and Mechanical Properties of Friction Stir Welded Pure Copper Joints,” Materials Science and Engineering: A, Vol. 528, Nos. 16-17, pp. 5470–5475, 2011.CrossRefGoogle Scholar
  120. 120.
    Dinaharan, I. and Murugan, N., “Dry Sliding Wear Behavior of AA6061/ZrB2 in-situ Composite,” Transactions of Nonferrous Metals Society of China, Vol. 22, No. 4, pp. 810–818, 2012.CrossRefGoogle Scholar
  121. 121.
    Sathiskumar, R., Dinaharan, I., Murugan, N., and Vijay, S. J., “Influence of Tool Rotational Speed on Microstructure and Sliding Wear Behavior of Cu/B4C Surface Composite Synthesized by Friction Stir Processing,” Transactions of Nonferrous Metals Society of China, Vol. 24, No.1, pp. 95–102, 2014.Google Scholar
  122. 122.
    Dinaharan, I., Nelson, R., Vijay, S. J., and Akinlabi, E. T., “Microstructure and Wear Characterization of Aluminum Matrix Composites Reinforced with Industrial Waste Fly Ash Particulates Synthesized by Friction Stir Processing,” Materials Characterization, Vol. 118, pp. 149–158, 2016.CrossRefGoogle Scholar
  123. 123.
    Mahmoud, E. R. I., Takahashi, M., Shibayanagi, T., and Ikeuchi, K., “Fabrication of Surface-Hybrid-MMCs Layer on Aluminum Plate by Friction Stir Processing and Its Wear Characteristics,” Materials Transactions, Vol. 50, Nos. 9-10, pp. 1824–1831, 2009.CrossRefGoogle Scholar
  124. 124.
    Arora, H. S., Singh, H., Dhindaw, B. K., and Grewal, H. S., “Improving the Tribological Properties of Mg Based AZ31 Alloy Using Friction Stir Processing,” Advanced Materials Research, Vol. 585, pp. 579–583, 2012.CrossRefGoogle Scholar
  125. 125.
    Yuvaraj, N. and Aravindan, S., “Fabrication of Al5083/B4C Surface Composite by Friction Stir Processing and its Tribological Characterization,” Journal of Materials Research and Technology, Vol. 4, No. 4, pp. 398–410, 2015.CrossRefGoogle Scholar
  126. 126.
    Ceschini, L., Boromei, I., Minak, G., Morri, A., and Tarterini, F., “Effect of Friction Stir Welding on Microstructure, Tensile and Fatigue Properties of the AA7005/10 vol.% Al2O3p Composite,” Composites Science and Technology, Vol. 67, Nos. 3-4, pp. 605–615, 2007.CrossRefGoogle Scholar
  127. 127.
    Ceschini, L., Boromei, I., Minak, G., Morri, A., and Tarterini, F., “Microstructure, Tensile and Fatigue Properties of AA6061/20 vol.% Al2O3p Friction Stir Welded Joints, Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 4, pp. 1200–1210, 2007.CrossRefGoogle Scholar
  128. 128.
    Pirondi, A. and Collini, L., “Analysis of Crack Propagation Resistance of Al-Al2O3 Particulate-Reinforced Composite Friction Stir Welded Butt Joints,” International Journal of Fatigue, Vol. 31, No. 1, pp. 111–121, 2009.CrossRefGoogle Scholar
  129. 129.
    Minak, G., Ceschini, L., Boromei, I., and Ponte, M., “Fatigue Properties of Friction Stir Welded Particulate Reinforced Aluminium Matrix Composites,” International Journal of Fatigue, Vol. 32, No. 1, pp. 218–226, 2010.CrossRefGoogle Scholar
  130. 130.
    Srivatsan, T. S., Hajri, M. A., Petraroli, M., Hotton, B., and Lam, P. C., “Influence of Silicon Carbide Particulate Reinforcement on Quasi Static and Cyclic Fatigue Fracture Behavior of 6061 Aluminum Alloy Composites,” Materials Science and Engineering: A, Vol. 325, No. 2, pp. 202–214, 2002.CrossRefGoogle Scholar
  131. 131.
    Han, N. L., Wang, Z. G., and Zhangb, G. D., “Effect of Reinforcement Size on the Elevated-Temperature Tensile Properties and Low-Cycle Fatigue Behaviour of Particulate Sic/Al Composites,” Composites Science and Technology, Vol. 57, No. 11, pp. 1491–1499, 1997.CrossRefGoogle Scholar
  132. 132.
    Rai, R., De, A., Bhadeshia, H., and Deb Roy, T., Review: Friction Stir Welding Tools,” Science and Technology of Welding and Joining, Vol. 16, No. 4, pp. 325–342, 2011.CrossRefGoogle Scholar
  133. 133.
    Sato, Y. S., Miyake, M., Kokawa, H., Omori, T., Ishida, K., et al., “Tool Material Factors for Suppression of Wear in Co-Based Alloy Tool during Friction Stir Welding of 0.45C Steel,” Proc. of 10th International Friction Stir Welding Symposium, 2014.Google Scholar
  134. 134.
    Han, W. T., Tsuda, N., Chen, D. S., Ha, Y., Je, H., et al., “Effects of Rotation Speed on Microstructure and Hardness of Friction Stir Welded ODS Ferritic Steel,” Proc. 1st International Joint Symposium on Joining and Welding, pp. 81–85, 2013.CrossRefGoogle Scholar
  135. 135.
    Prater, T., “Friction Stir Welding of Metal Matrix Composite for Use in Aerospace Structures,” Acta Astronautica, Vol. 93, pp. 366–373, 2014.CrossRefGoogle Scholar
  136. 136.
    Prado, R. A., Murr, L. E., Soto, K. F., and McClure, J. C., “Self-Optimization in Tool Wear for Friction Stir Welding of Al6061 + 20% Al2O3 MMC,” Materials Science and Engineering: A, Vol. 349, Nos. 1-2, pp. 156–165, 2003.CrossRefGoogle Scholar
  137. 137.
    Liu, H. J., Feng, J. C., Fujii, H., and Nogi, K., “Wear Characteristics of a WC-Co Tool in Friction Stir Welding of AC4A+30vol%SiCp Composite,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 14, pp. 1635–1639, 2005.CrossRefGoogle Scholar
  138. 138.
    Prater, T. J., Strauss, A. M., Cook, G. E., Machemeh, C., Sutton, P., et al., “Statistical Modeling and Prediction of Wear in Friction Stir Welding of Metal Matrix Composite (Al 359/SiC/20P),” Journal of Manufacturing Technology Research, Vol. 2, Nos. 1-2. pp. 1–13, 2010.Google Scholar
  139. 139.
    Gibson, B., Cook, G., Prater, T., Longhurst, W., Strauss, A. M., et al., “Adaptive Torque Control of Friction Stir Welding for the Purpose of Estimating Tool Wear,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 225, No. 8, pp. 1293–1303, 2011.CrossRefGoogle Scholar
  140. 140.
    Prater, T., Strauss, A., Cook, G., Gibson, B., and Cox, C., “A Comparative Evaluation of the Wear Resistance of Various Tool Materials in Friction Stir Welding of Metal Matrix Composites,” Journal of Materials Engineering and Performance, Vol. 22, pp. 1807–1813, 2013.CrossRefGoogle Scholar
  141. 141.
    Wang, D., Xiao, B. L., Ni, D. R., and Ma, Z. Y., “Friction Stir Welding of Discontinuously Reinforced Aluminum Matrix Composites: A Review,” Acta Metallurgica Sinica, Vol. 27, pp. 816–824, 2014.CrossRefGoogle Scholar
  142. 142.
    Ni, D. R., Chen, D. L., Wang, D., Xiao, B. L., and Ma, Z. Y., “Tensile Properties and Strain-Hardening Behavior of Friction Stir Welded SiCp/AA2009 Composite Joints,” Materials Science and Engineering: A, Vol. 608, pp. 1–10, 2014.CrossRefGoogle Scholar
  143. 143.
    Cioffi, F., Fernández, R., Gesto, D., Rey, P., Verdera, D., et al., “Friction Stir Welding of Thick Plates of Aluminum Alloy Matrix Composite with a High Volume Fraction of Ceramic Reinforcement,” Composites Part A: Applied Science and Manufacturing, Vol. 54, pp. 117–123, 2013.CrossRefGoogle Scholar
  144. 144.
    Fu, R. D., Sun, R. C., Zhang, F. C., and Liu, H. J., “Improvement of Formation Quality for Friction Stir Welded Joints,” Welding Journal, Vol. 91, pp. 169–173, 2012.Google Scholar
  145. 145.
    Bozkurt, Y., Uzun, H., and Salman, S., “Microstructure and Mechanical Properties of Friction Stir Welded Particulate Reinforced AA2124/SiC/25p-T4 Composite,” Journal of Composite Materials, Vol. 45, No. 21, pp. 2237–2245, 2011.CrossRefGoogle Scholar
  146. 146.
    Azizieh, M., Kokabi, A. H., and Abachi, P., “Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/ Al2O3 Nano Composites Fabricated by Friction Stir Processing,” Materials & Design, Vol. 32, pp. 2034–2041, 2011.CrossRefGoogle Scholar
  147. 147.
    Mahmouda, E. R. I., Takahashi, M., Shibayanagi, T., and Ikeuchi, K., “Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing,” Wear, Vol. 268, pp. 1111–1121, 2010.CrossRefGoogle Scholar
  148. 148.
    Chen, C. -L., Tatlock, G. J., and Jones, A. R., “Microstructural Evolution in Friction Stir Welding of Nano Structured ODS Alloys,” Journal of Alloys and Compounds, Vol. 504, pp. S460–S466, 2010.CrossRefGoogle Scholar
  149. 149.
    Lee, C. J., Huang, J. C., and Hsieh, P. J., “Mg Based Nano-Composites Fabricated by Friction Stir Processing,” Scripta Materialia, Vol. 54, pp. 1415–1420, 2006.CrossRefGoogle Scholar
  150. 150.
    Root, J. M., Field, D. P., and Nelson, T. W., “Crystallographic Texture in the Friction-Stir-Welded Metal Matrix Composite Al6061 with 10 Vol Pct Al2O3,” Metallurgical and Materials Transactions A, Vol. 40, pp. 2109–2114, 2009.CrossRefGoogle Scholar
  151. 151.
    Lee, W. B., Yeon, Y. M., and Jung, S. B., “Joint Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy,” Materials Science and Technology, Vol. 19, pp. 785–790, 2003.CrossRefGoogle Scholar
  152. 152.
    Hsu, C. J., Kao, P. W., and Ho, N. J., “Ultrafine-Grained Al-Al2Cu Composite Produced in Situ by Friction Stir Processing,” Scripta Materialia, Vol. 53, pp. 341–345, 2005.CrossRefGoogle Scholar
  153. 153.
    Han, W., Kimura, A., Tsuda, N., Serizawa, H., Chen, D., et al., “Effects of Mechanical Force on Grain Structures of Friction Stir Welded Oxide Dispersion Strengthened Ferritic Steel,” Journal of Nuclear Materials, Vol. 455, pp. 46–50, 2014.CrossRefGoogle Scholar
  154. 154.
    Zohoor, M., Besharati Givi, M. K., and Salami, P., “Effect of Processing Parameters on Fabrication of Al-Mg/Cu Composites via Friction Stir Processing,” Materials & Design, Vol. 39, pp. 358–365, 2012.CrossRefGoogle Scholar
  155. 155.
    Patthi, U., Awang, M., Ahmad, F., Rani, A. M. A., Ezinger, N., et al., “Study of Physical and Mechanical Properties of Aluminum 6092/SiC25p/T6 friction Stir Welded Plate,” Asian Journal of Scientific Research, Vol. 6, No. 3, pp. 555–563, 2013.CrossRefGoogle Scholar
  156. 156.
    Khodabakhshi, F., Ghasemi Yazdabadi, H., Kokabi, A. H., and Simchi, A., “Friction Stir Welding of a P/MAl-Al2O3 Nano Composite: Microstructure and Mechanical Properties,” Materials Science and Engineering: A, Vol. 585, pp. 222–232, 2013.CrossRefGoogle Scholar
  157. 157.
    Wang, D., Xiao, B. L., Wang, Q. Z., and Ma, Z. Y., “Friction Stir Welding of SiCp/2009Al Composite Plate,” Materials & Design, Vol. 47, pp. 243–247, 2013.CrossRefGoogle Scholar
  158. 158.
    Zhang, X. X., Ni, D. R., Xiao, B. L., Andr, H., Gan, W. M., et al., “Determination of Macroscopic and Microscopic Residual Stresses in Friction Stir Welded Metal Matrix Composites via Neutron Diffraction, Acta Materialia, Vol. 87, pp. 161–173, 2015.CrossRefGoogle Scholar
  159. 159.
    Boromei, I., Ceschini, L., Morri, A., and Garagnani, G. L., “Friction Stir Welding of Aluminium Based Composites Reinforced with Al2O3 Particles: Effects on Microstructure and Charpy Impact Energy,” Metallurgical Science and Technology, Vol. 24, No.1, pp. 12–21, 2004.Google Scholar
  160. 160.
    Pirondi, A., Collini, L., and Fersini, D., “Fracture and Fatigue Crack Growth Behaviour of PMMC Friction Stir Welded Butt Joints,” Engineering Fracture Mechanics, Vol. 75, pp. 4333–4342, 2008.CrossRefGoogle Scholar
  161. 161.
    Uzun, H., “Friction Stir Welding of SiC Particulate Reinforced AA2124 Aluminium Alloy Matrix Composite,” Materials & Design, Vol. 28, pp. 1440–1446, 2007.CrossRefGoogle Scholar
  162. 162.
    Asadi, P., Besharati Givi, M. K., and Faraji, G., “Producing Ultrafine Grained AZ91 from as Cast AZ91 by FSP,” Materials and Manufacturing Processes, Vol. 25, pp. 1219–1226, 2010.CrossRefGoogle Scholar
  163. 163.
    Asadi, P., Faraji, G., and Besharati Givi, M. K., “Producing of AZ91/SiC Composite by Friction Stir Processing (FSP),” International Journal of Advanced Manufacturing Technology, Vol. 51, pp. 247–260, 2010.CrossRefGoogle Scholar
  164. 164.
    Asadi, P., Faraji, G., Masoumi, A., and Besharati Givi, M. K., “Experimental Investigation of Magnesium-Base Nano composite Produced by Friction Stir Processing: Effects of Particle Types and Number of Friction Stir Processing Passes,” Metallurgical and Materials Transactions A, Vol. 42 pp. 2820–2832, 2011.CrossRefGoogle Scholar
  165. 165.
    Asadi, P., Besharati Givi, M. K., Rastgoo, A., Akbari, M., Zakeri, V., et al., “Predicting The Grain Size and Hardness of AZ91/SiC Nano Composite by Artificial Neural Networks,” International Journal of Advanced Manufacturing Technology, Vol. 63, pp. 1095–1107, 2012.CrossRefGoogle Scholar
  166. 166.
    Azizieh, M., Kokabi, A. H., and Abachi, P., “Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/ Al2O3 Nano Composites Fabricated by Friction Stir Processing,” Materials & Design, Vol. 32, pp. 2034–2041, 2011.CrossRefGoogle Scholar
  167. 167.
    Faraji, G., Dastani, O., and Akbari Mousavi, S. A. A., “Effect of Process Parameters on Microstructure and Micro-Hardness of AZ91/ Al2O3 Surface Composite Produced by FSP,” Journal of Materials Engineering and Performance, Vol. 2, pp. 1583–1590, 2011.CrossRefGoogle Scholar
  168. 168.
    Madhusudhan Reddy, G., Sambasiva Rao, A., and Srinivasa Rao, K., “Friction Stir Processing for Enhancement of Wear Resistance of ZM21 Magnesium Alloy,” Transactions of the Indian Institute of Metals, Vol. 66, No. 1, pp. 13–24, 2013.CrossRefGoogle Scholar
  169. 169.
    Huang, Y., Wang, T., Guo, W., Wan, L., and Lv, S., “Microstructure and Surface Mechanical Property of AZ31 Mg/SiCp Surface Composite Fabricated by Direct Friction Stir Processing,” Materials & Design, Vol. 59, pp. 274–278, 2014.CrossRefGoogle Scholar
  170. 170.
    Jiang, Y., Yang, X., Miura, H., and Sakai, T., “Nano-SiO2 Particles Reinforced Magnesium Alloy Produced by Friction Stir Processing,” Review on Advanced Materials Science, Vol. 33, pp. 29–32, 2013.Google Scholar
  171. 171.
    Ratna Sunil, B., Sampath Kumar, T. S., Chakkingal, U., Nandakumar, V., and Doble, M., “Nano Hydroxyapatite Reinforced AZ31 Magnesium Alloy by Friction Stir Processing: A Solid State Processing for Biodegradable Metal Matrix composites,” Journal of Materials Science: Materials in Medicine, Vol. 25, pp. 975–988, 2014.Google Scholar
  172. 172.
    Ratna Sunil, B., Sampath Kumar, T. S., Chakkingal, U., Nandakumar, V., and Doble, M., “Friction Stir Processing of Magnesium-Nano Hydroxyapatite Composites with Controlled in Vitro Degradation Behavior,” Materials Science and Engineering: C, Vol. 39, pp. 315–324, 2014.CrossRefGoogle Scholar
  173. 173.
    Balakrishnan, M., Dinaharan, I., Palanivel, R., and Sivaprakasam, R., “Synthesize of AZ31/TiC Magnesium Matrix Composites Using Friction Stir Processing,” J Journal of Magnesium and Alloys, Vol. 3, pp. 76–78, 2015.CrossRefGoogle Scholar
  174. 174.
    Legendre, F., Poissonnet, S., Bonnaillie, P., Boulanger, L., and Forest, L., “Some Microstructural Characterisations in a Friction Stir Welded Oxide Dispersion Strengthened Ferritic Steel Alloy,” Journal of Nuclear Materials, Vol. 386, pp. 537–539, 2009.CrossRefGoogle Scholar
  175. 175.
    Baker, B. W., McNelley, T. R., and Brewer, L. N., “Grain Size and Particle Dispersion Effects on The Tensile Behavior of Friction Stir Welded MA956 Oxide Dispersion Strengthened Steel from Low to Elevated Temperatures,” Materials Science and Engineering: A, Vol. 589, pp. 217–227, 2014.CrossRefGoogle Scholar
  176. 176.
    Baker, B. W., Menon, S. K., McNelley, T. R., Brewer, L. N., Dasher, B. E., et al., “Processing-Microstructure Relationships in Friction Stir Welding of MA956 Oxide Dispersion Strengthened Steel,” Metallurgical and Materials Transactions E, Vol. 1, pp. 318–330, 2014.CrossRefGoogle Scholar
  177. 177.
    Amirizad, M., Kokabi, A. H., Abbasi Gharacheh, M., Sarrafi, R., Shalchi, B., et al., “Evaluation of Microstructure and Mechanical Properties in Friction Stir Welded A356+15%SiCp cast Composite,” Materials Letters, Vol. 60, pp. 565–568, 2006.CrossRefGoogle Scholar
  178. 178.
    Wert, J. A., “Microstructures of Friction Stir Weld Joints Between an Aluminium Base Metal Matrix Composite and a Monolithic Aluminium Alloy,” Scripta Materialia, Vol. 49, pp. 607–612, 2003.CrossRefGoogle Scholar
  179. 179.
    Bahrami, M., Besharati Givi, M. K., Dehghani, K., and Parvin, N., “On The Role of Pin Geometry in Microstructure and Mechanical Properties of AA7075/SiC Nano-Composite Fabricated by Friction Stir Welding Technique,” Materials & Design, Vol. 53, pp. 519–527, 2014.CrossRefGoogle Scholar
  180. 180.
    Dolatkhah, A., Golbabaei, P., Besharati Givi, M. K., and Molaiekiya, F., “Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated via Friction Stir Processing,” Materials & Design, Vol. 37, pp. 458–464, 2012.CrossRefGoogle Scholar
  181. 181.
    Zarghani, A. S., Kashani-Bozorg, S. F., and Hanzaki, A. Z., “Microstructures and Mechanical Properties of Al/Al2O3 Surface Nano-Composite Layer Produced by Friction Stir Processing,” Materials Science and Engineering: A, Vol. 500, pp. 84–91, 2009.CrossRefGoogle Scholar
  182. 182.
    Ahn, B.-W., Choi, D.-H., Kim, Y.-H., and Jung, S.-B., “Fabrication of SiCp/AA5083 Composite via Friction Stir Welding,” Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 634–638, 2012.CrossRefGoogle Scholar
  183. 183.
    Hsu, C. J., Chang, C. Y., Kao, P. W., Ho, N. J., and Chang, C. P., “Al-Al3Ti Nano Composites Produced in Situ by Friction Stir Processing,” Acta Materialia, Vol. 54, pp. 5241–5249, 2006.CrossRefGoogle Scholar
  184. 184.
    Zhang, Q., Xiao, B. L., Wang, D., and Ma, Z. Y., “Formation Mechanism of in Situ Al3Ti in Al Matrix During Hot Pressing and Subsequent Friction Stir Processing,” Materials Chemistry and Physics, Vol. 130, pp. 1109–1117, 2011.CrossRefGoogle Scholar
  185. 185.
    Zhang, Q., Xiao, B. L., Xue, P., and Ma, Z. Y., “Microstructural Evolution and Mechanical Properties of Ultrafine Grained Al3Ti/ Al-5.5Cu Composite Produced via Hot Pressing and Subsequent Friction Stir Processing,” Materials Chemistry and Physics, Vol. 134, pp. 294–301, 2012.CrossRefGoogle Scholar
  186. 186.
    Zhang, Q., Xiao, B. L., and Ma, Z. Y., “In situ Formation of Various Intermetallic Particles in Al-Ti-X (Cu, Mg) Systems During Friction Stir Processing,” Intermetallics, Vol. 40, pp. 36–44, 2013.CrossRefGoogle Scholar
  187. 187.
    Baker, H. and Okamoto, H., “Alloy Phase Diagrams,” ASM International, 1992.Google Scholar
  188. 188.
    Ke, L., Huang, C., Xing, Li., and Huang, K., “Al-Ni Intermetallic Composites Produced in Situ by Friction Stir Processing,” Journal of Alloys and Compounds, Vol. 503, pp. 494–499, 2010.CrossRefGoogle Scholar
  189. 189.
    Qian, J., Li, J., Xiong, J., Zhang, F., and Lin, X., “In situ Synthesizing Al3Ni for Fabrication of Intermetallic-Reinforced Aluminum Alloy Composites by Friction Stir Processing,” Materials Science and Engineering: A, Vol. 550, pp. 279–285, 2012.CrossRefGoogle Scholar
  190. 190.
    Shahi, A., Sohi, M. H., Ahmadkhaniha, D., and Ghambari, N., “In Situ Formation of Al-Al3Ni Composites on Commercially Pure Aluminium by Friction Stir Processing,” International Journal of Advanced Manufacturing Technology, Vol. 75, pp. 1331–1337, 2014.CrossRefGoogle Scholar
  191. 191.
    Lee, I. S., Kao, P. W., and Ho, N. J., “Microstructure and Mechanical Properties of Al-Fe in Situ Nano Composite Produced by Friction Stir Processing,” Intermetallics, Vol. 16, pp. 1104–1108, 2008.CrossRefGoogle Scholar
  192. 192.
    Lee, I. S., Kao, P. W., Chang, C. P., and Ho, N. J., “Formation of Al-Mo Intermetallic Particle-Strengthen Aluminium Alloys by Friction Stir Processing,” Intermetallics, Vol. 35, pp. 9–14, 2013.CrossRefGoogle Scholar
  193. 193.
    Khodabakhshi, F., Simchi, A., Kokabi, A. H., Nosko, M., Simancik, F., et al., “Microstructure and Texture Development During Friction Stir Processing of Al-Mg Alloy Sheets with TiO2 Nano Particles,” Materials Science and Engineering: A, Vol. 605, pp. 108–118, 2014.CrossRefGoogle Scholar
  194. 194.
    Khodabakhshi, F., Gerlich, A. P., Simchi, A., and Kokabi, A. H., “Hot Deformation Behaviour of an Aluminum-Matrix Hybrid Nano Composite Fabricated by Friction Stir Processing,” Materials Science and Engineering: A, Vol. 626, pp. 458–466, 2015.CrossRefGoogle Scholar
  195. 195.
    Khodabakhshi, F., Simchi, A., Kokabi, A. H., Nosko, M., and Svec, P., “Strain Rate Sensitivity, Work Hardening, and Fracture Behavior of an Al-Mg TiO2 Nano Composite Prepared by Friction Stir Processing,” Metallurgical and Materials Transactions A, Vol. 45, pp. 4073–4088, 2014.CrossRefGoogle Scholar
  196. 196.
    Zangabad, P. S., Khodabakhshi, F., Simchi, A., and Kokabi, A. H., “Fatigue Fracture of Friction-Stir Processed Al-Al3Ti-MgO Hybrid Nano Composites,” International Journal of Fatigue, Vol. 87, pp. 266–278, 2016.CrossRefGoogle Scholar
  197. 197.
    Mehraban, F. A., Karimzadeh, F., and Abbasi, M. H., “Development of Surface Nano Composite based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of its properties,” Journal of the Minerals, Metals and Materials Society, Vol. 67, pp. 998–1006, 2015.CrossRefGoogle Scholar
  198. 198.
    Rahsepar, M. and Jarahimoghadam, H., “The Influence of Multipass Friction Stir Processing on The Corrosion Behavior and Mechanical Properties of Zircon-Reinforced Al Metal Matrix Composites,” Materials Science and Engineering: A, Vol. 671, pp. 214–220, 2016.CrossRefGoogle Scholar
  199. 199.
    Hosseini, S. A., Ranjbar, K., Dehmolaei, R., and Amirani, A. R., “Fabrication of Al5083 Surface Composites Reinforced by CNTs and Cerium Oxide Nano Particles via Friction Stir Processing,” Journal of Alloys and Compounds, Vol. 622, pp. 725–733, 2015.CrossRefGoogle Scholar
  200. 200.
    Shahraki, S., Khorasani, S., Behnagh, R. A., Fotouhi, Y., and Bisadi, H., “Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP),” Metallurgical and Materials Transactions B, Vol. 44 pp. 1546–1553, 2013.CrossRefGoogle Scholar
  201. 201.
    Zhao, K., Liu, Z., Xiao, B., and Ma, Z., “Friction Stir Welding of Carbon Nanotubes Reinforced Al-Cu-Mg Alloy Composite Plates,” Journal of Materials Science & Technology, DOI: doi.org/10.1016/ j.jmst.2017.01.033, 2017Google Scholar
  202. 202.
    Prasada S. V. and Asthana R., “Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations,” Tribology Letters, Vol. 17, pp. 445–453, 2004.CrossRefGoogle Scholar
  203. 203.
    Rawal S., “Metal-Matrix Composite for Space Application, Journal of the Minerals,” Metals and Materials Society, Vol. 53, No. 4, pp. 14–17, 2001.CrossRefGoogle Scholar
  204. 204.
    Rawal S. P. and Misra, M. S., “Dimensional Stability of Cast Gr-Mg Composites,” Proc. of 19th International SAMPE Conference, pp. 134–147, 1987.Google Scholar
  205. 205.
    Thaw, C., “Metal Matrix Composites for Microwave Packaging Components, Electronic Packaging and Production,” pp. 27–29, 1987.Google Scholar
  206. 206.
    Miracle, D. B. and Maruyama, B., “Metal Matrix Composites for Space Systems: Current Uses and Future Opportunities,” Affordable Metal-Matrix Composites for High Performance Applications II, 2000.Google Scholar
  207. 207.
    Evans, A., Marchi C. S., and Mortensen A., “Metal Matrix Composites in Industry: An Introduction and a Survey,” Dordrecht, Netherlands: Kluwer Academic Publishers; 2003.Google Scholar
  208. 208.
    Zweben, C., “Thermal Management and Electronic Packaging Applications, in: ASM Handbook, Miracle, D. B. and Donaldson, S. L., (Eds.), ASM International, pp. 1078–1084, 2001.Google Scholar
  209. 209.
    Hunt, W. H. and Miracle D. B., “Automotive Applications of Metal Matrix Composites,” in: ASM Handbook, Miracle D. B. and Donaldson, S. L., (Eds.), ASM International, pp. 1029–1032, 2001.Google Scholar
  210. 210.
    Miracle, D., “Metal Matrix Composites-From Science to Technological Significance,” Composites Science and Technology, Vol. 65, No. 15, pp. 2526–2540, 2005.CrossRefGoogle Scholar
  211. 211.
    Clyne, T. W. and Withers, P. J., “An Introduction to Metal Matrix Composites,” Cambridge University Press, 1995.Google Scholar
  212. 212.
    Dwivedi, S. P., Sharma, S., and Mishra, R. K., “Mechanical and Metallurgical Characterizations of AA2014/Eggshells Waste Particulate Metal Matrix Composite,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 3, pp. 281–288, 2016.CrossRefGoogle Scholar
  213. 213.
    Lee, M. S., Seo, H. Y., and Kang, C. G., “Comparative Study on Mechanical Properties of CR340/CFRP Composites through Three Point Bending Test by Using Theoretical and Experimental Methods,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 359–365, 2016.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2018

Authors and Affiliations

  • Hrishikesh Das
    • 1
  • Mounarik Mondal
    • 1
  • Sung-Tae Hong
    • 1
  • Doo-Man Chun
    • 1
  • Heung Nam Han
    • 2
  1. 1.School of Mechanical EngineeringUniversity of UlsanUlsanRepublic of Korea
  2. 2.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations