Skip to main content

Advertisement

Log in

Sleep Disordered Breathing at High Altitude in Adults and Its Interaction with Cardiovascular Homeostasis

  • Sleep and Sleep Apnea at the Extremes (D Gozal, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Worldwide > 140 million people are living at high altitude and large numbers of lowlanders travel to high altitude for professional reasons or leisure activities. While there is widely held belief that sleep is perturbed at high altitude, little scientific evidence supports this notion. Here, we summarize recent work on sleep at high altitude in newcomers and high-altitude dwellers with particular emphasis on the interactions between sleep-disordered breathing (SDB) and cardiovascular regulation.

Recent Findings

Recent studies show an interaction between SDB and cardiovascular homeostasis in high-altitude dwellers. In high-altitude dwellers, SDB is associated with pulmonary hypertension and right ventricular dysfunction, premature atherosclerosis in the systemic circulation, and altered regulation of the cerebrovascular circulation related with cognitive decline and depression.

Summary

In high-altitude dwellers, recent studies show a potential role of SDB in promoting cardiovascular morbidity and mortality. There is an urgent need for studies examining the effects of the treatment of SDB on cardiovascular homeostasis and its long-term benefits on cardiovascular morbidity/mortality in high-altitude dwellers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Soria R, Egger M, Scherrer U, Bender N, Rimoldi SF. Pulmonary artery pressure and arterial oxygen saturation in people living at high or low altitude: systematic review and meta-analysis. J Appl Physiol (1985). 2016;121(5):1151–9.

    Article  Google Scholar 

  2. •• Bloch KE, Buenzli JC, Latshang TD, Ulrich S. Sleep at high altitude: guesses and facts. J Appl Physiol (1985). 2015;119(12):1466–80. This systematic literature research on sleep at altitude assessed by polysomnography shows the main sleep changes while traveling to high altitude.

    Article  CAS  Google Scholar 

  3. Lovis A, De Riedmatten M, Greiner D, Lecciso G, Andries D, Scherrer U, et al. Effect of added dead space on sleep disordered breathing at high altitude. Sleep Med. 2012;13(6):663–7.

    Article  CAS  PubMed  Google Scholar 

  4. Latshang TD, Lo Cascio CM, Stowhas AC, Grimm M, Stadelmann K, Tesler N, et al. Are nocturnal breathing, sleep, and cognitive performance impaired at moderate altitude (1,630-2,590 m)? Sleep. 2013;36(12):1969–76.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nussbaumer-Ochsner Y, Ursprung J, Siebenmann C, Maggiorini M, Bloch KE. Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing. Sleep. 2012;35(3):419–23.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bloch KE, Latshang TD, Turk AJ, Hess T, Hefti U, Merz TM, et al. Nocturnal periodic breathing during acclimatization at very high altitude at Mount Muztagh Ata (7,546 m). Am J Respir Crit Care Med. 2010;182(4):562–8.

    Article  PubMed  Google Scholar 

  7. Jafarian S, Gorouhi F, Taghva A, Lotfi J. High-altitude sleep disturbance: results of the Groningen Sleep Quality Questionnaire survey. Sleep Med. 2008;9(4):446–9.

    Article  PubMed  Google Scholar 

  8. Anderson PJ, Wiste HJ, Ostby SA, Miller AD, Ceridon ML, Johnson BD. Sleep disordered breathing and acute mountain sickness in workers rapidly transported to the South Pole (2835 m). Respir Physiol Neurobiol. 2015;210:38–43.

    Article  CAS  PubMed  Google Scholar 

  9. Scherrer U, Verges S. Sleep apnoea and pulmonary hypertension in high-altitude dwellers: more than an association? Eur Respir J. 2017;49(2):1602232.

    Article  PubMed  Google Scholar 

  10. Nespoulet H, Wuyam B, Tamisier R, Saunier C, Monneret D, Remy J, et al. Altitude illness is related to low hypoxic chemoresponse and low oxygenation during sleep. Eur Respir J. 2012;40(3):673–80.

    Article  PubMed  Google Scholar 

  11. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3(4):310–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol. 2008;52(8):686–717.

    Article  PubMed  Google Scholar 

  13. Nussbaumer-Ochsner Y, Schuepfer N, Ulrich S, Bloch KE. Exacerbation of sleep apnoea by frequent central events in patients with the obstructive sleep apnoea syndrome at altitude: a randomised trial. Thorax. 2010;65(5):429–35.

    Article  PubMed  Google Scholar 

  14. Patz D, Spoon M, Corbin R, Patz M, Dover L, Swihart B, et al. The effect of altitude descent on obstructive sleep apnea. Chest. 2006;130(6):1744–50.

    Article  PubMed  Google Scholar 

  15. Ulrich S, Nussbaumer-Ochsner Y, Vasic I, Hasler E, Latshang TD, Kohler M, et al. Cerebral oxygenation in patients with OSA: effects of hypoxia at altitude and impact of acetazolamide. Chest. 2014;146(2):299–308.

    Article  CAS  PubMed  Google Scholar 

  16. • Latshang TD, Kaufmann B, Nussbaumer-Ochsner Y, Ulrich S, Furian M, Kohler M, et al. Patients with obstructive sleep apnea have cardiac repolarization disturbances when travelling to altitude: randomized, placebo-controlled trial of acetazolamide. Sleep. 2016;39(9):1631–7. This study shows that in OSA patients, the prolongation of mean QTc at high altitude is attenuated by acetazolamide administration.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bazurto Zapata MA, Martinez-Guzman W, Vargas-Ramirez L, Herrera K, Gonzalez-Garcia M. Prevalence of central sleep apnea during continuous positive airway pressure (CPAP) titration in subjects with obstructive sleep apnea syndrome at an altitude of 2640 m. Sleep Med. 2015;16(3):343–6.

    Article  PubMed  Google Scholar 

  18. Latshang TD, Nussbaumer-Ochsner Y, Henn RM, Ulrich S, Lo Cascio CM, Ledergerber B, et al. Effect of acetazolamide and autoCPAP therapy on breathing disturbances among patients with obstructive sleep apnea syndrome who travel to altitude: a randomized controlled trial. JAMA. 2012;308(22):2390–8.

    Article  CAS  PubMed  Google Scholar 

  19. Nussbaumer-Ochsner Y, Latshang TD, Ulrich S, Kohler M, Thurnheer R, Bloch KE. Patients with obstructive sleep apnea syndrome benefit from acetazolamide during an altitude sojourn: a randomized, placebo-controlled, double-blind trial. Chest. 2012;141(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  20. Rolan T. Neurology and altitude illness. Neurol Clin Pract. 2015;5(2):102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu HM, Chiang IJ, Kuo KN, Liou CM, Chen C. The effect of acetazolamide on sleep apnea at high altitude: a systematic review and meta-analysis. Ther Adv Respir Dis. 2017;11(1):20–9.

    Article  PubMed  Google Scholar 

  22. Orr JE, Heinrich EC, Djokic M, Gilbertson D, Deyoung PN, Anza-Ramirez C, et al. Adaptive servoventilation as treatment for central sleep apnea due to high-altitude periodic breathing in nonacclimatized healthy individuals. High Alt Med Biol. 2018;19(2):178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Augusti A, Celli BR, Chen R, Criner G, Frith P, Halpin D, et al. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease (2019 report). Global Initiative Chronic Obstr Lung Dis. 2019.

  24. Chen W, Thomas J, Sadatsafavi M, FitzGerald JM. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(8):631–9.

    Article  PubMed  Google Scholar 

  25. Christensen CC, Ryg M, Refvem OK, Skjonsberg OH. Development of severe hypoxaemia in chronic obstructive pulmonary disease patients at 2,438 m (8,000 ft) altitude. Eur Respir J. 2000;15(4):635–9.

    Article  CAS  PubMed  Google Scholar 

  26. Steveling EH, Clarenbach CF, Miedinger D, Enz C, Durr S, Maier S, et al. Predictors of the overlap syndrome and its association with comorbidities in patients with chronic obstructive pulmonary disease. Respiration. 2014;88(6):451–7.

    Article  PubMed  Google Scholar 

  27. Soler X, Gaio E, Powell FL, Ramsdell JW, Loredo JS, Malhotra A, et al. High prevalence of obstructive sleep apnea in patients with moderate to severe chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2015;12(8):1219–25.

    PubMed  PubMed Central  Google Scholar 

  28. Sanders MH, Newman AB, Haggerty CL, Redline S, Lebowitz M, Samet J, et al. Sleep and sleep-disordered breathing in adults with predominantly mild obstructive airway disease. Am J Respir Crit Care Med. 2003;167(1):7–14.

    Article  PubMed  Google Scholar 

  29. • Latshang TD, Tardent RPM, Furian M, Flueck D, Segitz SD, Mueller-Mottet S, Kohler M, Ulrich S, Bloch KE Sleep and breathing disturbances in patients with chronic obstructive pulmonary disease traveling to altitude: a randomized trial. Sleep. 2019; 42 (1). doi: https://doi.org/10.1093/sleep/zsy203. This study shows central sleep apneas, altered sleep structure, and insomnia in lowlanders with COPD traveling to high altitude.

  30. Latshang TD, Furian M, Aeschbacher SS, Ulrich S, Osmonov B, Mirrakhimov EM, et al. Association between sleep apnoea and pulmonary hypertension in Kyrgyz highlanders. Eur Respir J. 2017;49(2):1601530.

    Article  PubMed  Google Scholar 

  31. •• Rexhaj E, Rimoldi SF, Pratali L, Brenner R, Andries D, Soria R, et al. Sleep-disordered breathing and vascular function in patients with chronic mountain sickness and healthy high-altitude dwellers. Chest. 2016;149(4):991–8. This study shows that SDB and hypoxemia are more severe in CMS patients and are associated which systemic and pulmonary vascular dysfunction.

    Article  PubMed  Google Scholar 

  32. Leon-Velarde F, Villafuerte FC, Richalet JP. Chronic mountain sickness and the heart. Prog Cardiovasc Dis. 2010;52(6):540–9.

    Article  PubMed  Google Scholar 

  33. Pratali L, Rimoldi SF, Rexhaj E, Hutter D, Faita F, Salmon CS, et al. Exercise induces rapid interstitial lung water accumulation in patients with chronic mountain sickness. Chest. 2012;141(4):953–8.

    Article  PubMed  Google Scholar 

  34. Rimoldi SF, Rexhaj E, Pratali L, Bailey DM, Hutter D, Faita F, et al. Systemic vascular dysfunction in patients with chronic mountain sickness. Chest. 2012;141(1):139–46.

    Article  CAS  PubMed  Google Scholar 

  35. Stuber T, Sartori C, Schwab M, Jayet PY, Rimoldi SF, Garcin S, et al. Exaggerated pulmonary hypertension during mild exercise in chronic mountain sickness. Chest. 2010;137(2):388–92.

    Article  PubMed  Google Scholar 

  36. Badran M, Ayas N, Laher I. Cardiovascular complications of sleep apnea: role of oxidative stress. Oxidative Med Cell Longev. 2014;2014:985258.

    Article  CAS  Google Scholar 

  37. Gilmartin GS, Lynch M, Tamisier R, Weiss JW. Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2010;299(3):H925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamisier R, Pepin JL, Remy J, Baguet JP, Taylor JA, Weiss JW, et al. 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur Respir J. 2011;37(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  39. Yamauchi M, Kimura H. Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid Redox Signal. 2008;10(4):755–68.

    Article  CAS  PubMed  Google Scholar 

  40. Pialoux V, Hanly PJ, Foster GE, Brugniaux JV, Beaudin AE, Hartmann SE, et al. Effects of exposure to intermittent hypoxia on oxidative stress and acute hypoxic ventilatory response in humans. Am J Respir Crit Care Med. 2009;180(10):1002–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bailey DM, Rimoldi SF, Rexhaj E, Pratali L, Salinas Salmon C, Villena M, et al. Oxidative-nitrosative stress and systemic vascular function in highlanders with and without exaggerated hypoxemia. Chest. 2013;143(2):444–51.

    Article  CAS  PubMed  Google Scholar 

  42. •• Brenner R, Pratali L, Rimoldi SF, Murillo Jauregui CX, Soria R, Rexhaj E, et al. Exaggerated pulmonary hypertension and right ventricular dysfunction in high-altitude dwellers with patent foramen ovale. Chest. 2015;147(4):1072–9. This study shows that a PFO facilitates pulmonary hypertension and right ventricular dysfunction in high-altitude dwellers.

    Article  PubMed  Google Scholar 

  43. Rigatelli G, Sharma S. Patent foramen ovale-obstructive sleep apnea relationships: pro and cons. Cardiovasc Revasc Med. 2012;13(5):286–8.

    Article  PubMed  Google Scholar 

  44. Shaikh ZF, Jaye J, Ward N, Malhotra A, de Villa M, Polkey MI, et al. Patent foramen ovale in severe obstructive sleep apnea: clinical features and effects of closure. Chest. 2013;143(1):56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  45. • Rimoldi SF, Ott S, Rexhaj E, de Marchi SF, Allemann Y, Gugger M, et al. Patent foramen ovale closure in obstructive sleep apnea improves blood pressure and cardiovascular function. Hypertension. 2015;66(5):1050–7. This study shows that in OSA patients, PFO closure improved SDB and nocturnal oxygenation and, in turn, decreased arterial blood pressure and improved left ventricular diastolic function.

    Article  CAS  PubMed  Google Scholar 

  46. •• Bailey DM, Brugniaux JV, Filipponi T, Marley CJ, Stacey B, Soria R, et al. Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. J Physiol. 2019;597(2):611–29. This study shows that in CMS patients, increased oxidative–inflammatory–nitrosative stress is associated with altered cerebral perfusion, accelerated cognitive decline, and depression.

    Article  CAS  PubMed  Google Scholar 

  47. Weil JV. Sleep at high altitude. High Alt Med Biol. 2004;5(2):180–9.

    Article  PubMed  Google Scholar 

  48. Dempsey JA, Smith CA, Przybylowski T, Chenuel B, Xie A, Nakayama H, et al. The ventilatory responsiveness to CO(2) below eupnoea as a determinant of ventilatory stability in sleep. J Physiol. 2004;560 (Pt 1:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berssenbrugge A, Dempsey J, Iber C, Skatrud J, Wilson P. Mechanisms of hypoxia-induced periodic breathing during sleep in humans. J Physiol. 1983;343:507–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Richalet JP, Rivera M, Bouchet P, Chirinos E, Onnen I, Petitjean O, et al. Acetazolamide: a treatment for chronic mountain sickness. Am J Respir Crit Care Med. 2005;172(11):1427–33.

    Article  PubMed  Google Scholar 

  51. Beall CM. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol. 2006;46(1):18–24.

    Article  PubMed  Google Scholar 

  52. Beall CM, Strohl KP, Blangero J, Williams-Blangero S, Almasy LA, Decker MJ, et al. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. Am J Phys Anthropol. 1997;104(4):427–47.

    Article  CAS  PubMed  Google Scholar 

  53. Heinrich EC, Wu L, Lawrence ES, Cole AM, Anza-Ramirez C, Villafuerte FC, et al. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Ann Hum Genet. 2019;83(3):171–6. https://doi.org/10.1111/ahg.12299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jansen GF, Basnyat B. Brain blood flow in Andean and Himalayan high-altitude populations: evidence of different traits for the same environmental constraint. J Cereb Blood Flow Metab. 2011;31(2):706–14.

    Article  CAS  PubMed  Google Scholar 

  55. Virues-Ortega J, Hogan AM, Baya-Botti A, Kirkham FJ, Baldeweg T, Mahillo-Fernandez I, et al. Survival and mortality in older adults living at high altitude in Bolivia: a preliminary report. J Am Geriatr Soc. 2009;57(10):1955–6.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Swiss National Science Foundation, the Placide Nicod Foundation, the Swiss Society of Hypertension, the Swiss Society of Cardiology, and the Mach-Gaensslen Stiftung Schweiz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Scherrer.

Ethics declarations

Conflict of Interest

Emrush Rexhaj, Rodrigo Soria, Anne-Kathrin Brill, and Urs Scherrer each declare no financial or other relations that could lead to a conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sleep and Sleep Apnea at the Extremes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rexhaj, E., Soria, R., Brill, AK. et al. Sleep Disordered Breathing at High Altitude in Adults and Its Interaction with Cardiovascular Homeostasis. Curr Sleep Medicine Rep 5, 49–55 (2019). https://doi.org/10.1007/s40675-019-00138-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-019-00138-x

Keywords

Navigation