Skip to main content
Log in

Obstructive Sleep Apnea and Metabolic Risk: an Update

  • Sleep and 3D (Cancer, Cardiovascular, Metabolic Diseases) (D Gozal, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This short review is aimed at presenting the most recent literature linking obstructive sleep apnea (OSA) with metabolic risk.

Recent Findings

In the last decades, substantial evidence derived from experimental, translational, and clinical studies has supported the possibility that OSA predisposes to cardiovascular diseases via activation and propagation of multiple pathophysiological pathways. While initial studies focused on the hemodynamic effects of OSA, further studies indicated that the components of OSA (especially intermittent hypoxia) also promote metabolic deregulation, including insulin resistance, impaired lipoprotein clearance, and dyslipidemia.

Summary

This review indicates that the precise effects of chronic intermittent hypoxia and the relative impact of sleep fragmentation on glucose and lipid metabolism still require further studies as well as the impact of effective OSA treatment. Personalized medicine devoting to explore potential biomarkers that predicts metabolic risk may help to prevent cardiovascular disease in patients with OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 2013;62:569–76.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kapur V, Strohl KP, Redline S, Iber C, O’Connor G, Nieto J. Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath. 2002;6:49–54.

    Article  PubMed  Google Scholar 

  3. Marin J, Carrizo S, Vicente E, Agusti A. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365:1046–53.

    Article  PubMed  Google Scholar 

  4. Hoyos CM, Drager LF, Patel SR. OSA and cardiometabolic risk: what’s the bottom line? Respirology. 2017;22:420–9.

    Article  PubMed  Google Scholar 

  5. • Drager LF, Polotsky VY, O’Donnell CP, Cravo SL, Lorenzi-Filho G, Machado BH. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2015;309:H1101–11. This review provides an update of the basic, clinical, and translational advances about metabolic dysfunction and cardiovascular consequences of OSA.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Drager LF, Lopes HF, Maki-Nunes C, Trombetta IC, Toschi-Dias E, Alves MJNN, et al. The impact of obstructive sleep apnea on metabolic and inflammatory markers in consecutive patients with metabolic syndrome. PLoS One. 2010;5:1–8.

    Article  CAS  Google Scholar 

  7. Botros N, Concato J, Mohsenin V, Selim B, Doctor K, Yaggi HK. Obstructive sleep apnea as a risk factor for type 2 diabetes. Am J Med. 2009;122:1122–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Newhouse LP, Joyner MJ, Curry TB, Laurenti MC, Man CD, Cobelli C, et al. Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults. Physiol Rep. 2017;5:1–8.

    Article  CAS  Google Scholar 

  9. Polak J, Shimoda LA, Drager LF, Undem C, McHugh H, Polotsky VY, et al. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: partial improvement with cessation of the exposure. Sleep. 2013;36:1483–90.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mesarwi OA, Sharma EV, Jun JC, Polotsky VY. Metabolic dysfunction in obstructive sleep apnea: a critical examination of underlying mechanisms. Sleep Biol Rhythms. 2015;13:2–17.

    Article  PubMed  Google Scholar 

  11. Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Arch Eur J Physiol. 2007;455:479–92.

    Article  CAS  Google Scholar 

  12. Wang B, Wood IS, Trayhurn P. Hypoxia induces leptin gene expression and secretion in human preadipocytes: differential effects of hypoxia on adipokine expression by preadipocytes. J Endocrinol. 2008;198:127–34.

    Article  PubMed  CAS  Google Scholar 

  13. Carreras A, Kayali F, Zhang J, Hirotsu C, Wang Y, Gozal D. Metabolic effects of intermittent hypoxia in mice: steady versus high-frequency applied hypoxia daily during the rest period. AJP Regul Integr Comp Physiol. 2012;303:R700–9.

    Article  CAS  Google Scholar 

  14. Shin M-K, Yao Q, Jun JC, Bevans-Fonti S, Yoo D-Y, Han W, et al. Carotid body denervation prevents fasting hyperglycemia during chronic intermittent hypoxia. J Appl Physiol. 2014;117:765–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jun JC, Shin M-K, Devera R, Yao Q, Mesarwi O, Bevans-Fonti S, et al. Intermittent hypoxia-induced glucose intolerance is abolished by α-adrenergic blockade or adrenal medullectomy. Am J Physiol Endocrinol Metab. 2014;307:E1073–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen L, Kuang J, Pei J, Chen H, Chen Z, Li Z, et al. Continuous positive airway pressure and diabetes risk in sleep apnea patients: a systemic review and meta-analysis. Eur J Intern Med. 2016;39:39–50.

    Article  PubMed  CAS  Google Scholar 

  17. Pamidi S, Wroblewski K, Stepien M, Sharif-Sidi K, Kilkus J, Whitmore H, et al. Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes: a randomized controlled trial. Am J Respir Crit Care Med. 2015;192:96–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. • Zhu B, Ma C, Chaiard J, Shi C. Effect of continuous positive airway pressure on glucose metabolism in adults with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sleep Breath. 2017;21:1–9. This review examines the effect of CPAP treatment on glucose metabolism by synthesizing findings from randomized controlled trials.

    Article  Google Scholar 

  19. • Shin M-K, Han W, Joo H, Bevans-Fonti S, Shiota M, Stefanovski D, et al. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test. J Appl Physiol. 2017;122:767–74. This experimental study underscores the importance of sympathetic activation mediating the effects of CIH on glucose intolerance.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. • Gozal D, Gileles-Hillel A, Cortese R, Li Y, Almendros I, Qiao Z, et al. Visceral white adipose tissue following chronic intermittent and sustained hypoxia in mice. Am J Respir Cell Mol Biol. 2017;56:1–36. This is an interesting experimental study detailing the effects of chronic and sustained hypoxia on adipose tissue remodeling and metabolic alterations.

    Article  Google Scholar 

  21. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11:381–9.

    Article  PubMed  CAS  Google Scholar 

  22. Khalyfa A, Zhuanhong Q, Gileles-Hillel A, Khalyfa AA, Akbarpour M, Popko B, et al. Activation of integrated stress response and metabolic dysfunction in a murine model of sleep apnea. Am J Respir Cell Mol Biol. 2017;57:1–37.

    Article  Google Scholar 

  23. • Thomas A, Belaidi E, Moulin S, Horman S, Van Der Zon GC, Viollet B, et al. Chronic intermittent hypoxia impairs insulin sensitivity but improves whole-body glucose tolerance by activating skeletal muscle AMPK. Diabetes. 2017;66:2942–51. This study provides consistent evidence on the effects of chronic intermittent hypoxia on insulin sensitivity by activating skeletal muscle AMPK.

    Article  PubMed  CAS  Google Scholar 

  24. Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz M-N, Pehmøller C, et al. AMPK in skeletal muscle function and metabolism. FASEB J. 2017;32:1–38.

    Google Scholar 

  25. • Mokhlesi B, Grimaldi D, Beccuti G, Abraham V, Delebcque F, Cauter E. Effect of one week of 8-hour nightly continuous positive airway pressure treatment of obstructive sleep apnea on glycemic control in type 2 diabetes: a proof-of-concept study. Am J Respir Crit Care Med. 2016;194:516–9. Results from this randomized study underscore the need of optimal OSA treatment for reaching metabolic benefits.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shaw JE, Punjabi NM, Naughton MT, Willes L, Bergenstal RM, Cistulli PA, et al. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir Crit Care Med. 2016;194:486–92.

    Article  PubMed  CAS  Google Scholar 

  27. Campos-Rodriguez F, Gonzalez-Martinez M, Sanchez-Armengol A, Jurado-Gamez B, Cordero-Guevara J, Reyes-Nuñez N, et al. Effect of continuous positive airway pressure on blood pressure and metabolic profile in women with sleep apnoea. Eur Respir J. 2017;50:1700257.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gagnadoux F, Priou P, Meslier N, Trzepizur W. Effects of sleep apnoea therapy on blood pressure and metabolism: a CPAP sex gap? Eur Respir J. 2017;50:1–3.

    Article  Google Scholar 

  29. Martínez-Cerón E, Barquiel B, Bezos A-M, Casitas R, Galera R, García-Benito C, et al. Effect of continuous positive airway pressure on glycemic control in patients with obstructive sleep apnea and type 2 diabetes. A randomized clinical trial. Am J Respir Crit Care Med. 2016;194:476–85.

    Article  PubMed  Google Scholar 

  30. Ioachimescu O, Anthony J, Constantin T, Ciavatta M, McCarver K. VAMONOS (veterans affairs’ metabolism, obstructed and non-obstructed sleep) study: effects of CPAP therapy on glucose metabolism in patients with obstructive sleep apnea. J Clin Sleep Med. 2017;13:455–66.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375:919–31.

    Article  PubMed  Google Scholar 

  32. Kaur A, Mokhlesi B. The effect of OSA therapy on glucose metabolism: it’s all about CPAP adherence! J Clin Sleep Med. 2017;13:365–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. •• Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017;136:1840–50. This is a comprehensive review providing a detailed analysis and interpretation of recent randomized trials in OSA on metabolic and cardiovascular endpoints.

    Article  PubMed  Google Scholar 

  34. Liu A, Abbasi F, Kim SH, Ariel D, Lamendola C, Cardell J, et al. Effect of pioglitazone on cardiometabolic risk in patients with obstructive sleep apnea. Am J Cardiol. 2017;119:1205–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cao Z, Zhang P, He Z, Yang J, Liang C, Ren Y, et al. Obstructive sleep apnea combined dyslipidemia render additive effect on increasing atherosclerotic cardiovascular diseases prevalence. Lipids Health Dis. 2016;15:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Drager LF, Jun J, Polotsky VY. Obstructive sleep apnea and dyslipidemia: implications for atherosclerosis. Curr Opin Endocrinol Diabetes Obes. 2010;17:161–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. McArdle N, Hillman D, Beilin L, Watts G. Metabolic risk factors for vascular disease in obstructive sleep apnea: a matched controlled study. Am J Respir Crit Care Med. 2007;175:190–5.

    Article  PubMed  CAS  Google Scholar 

  38. Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, et al. Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res. 2005;97:698–706.

    Article  PubMed  CAS  Google Scholar 

  39. Drager LF, Li J, Shin MK, Reinke C, Aggarwal NR, Jun JC, et al. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea. Eur Heart J. 2012;33:783–90.

    Article  PubMed  CAS  Google Scholar 

  40. Drager LF, Yao Q, Hernandez KL, Shin MK, Bevans-Fonti S, Gay J, et al. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4. Am J Respir Crit Care Med. 2013;188:240–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Newman A, Nieto F, Guidry U, Lind B, Redline S, Shahar E, et al. Relation of sleep-disordered breathing to cardiovascular disease risk factors: the sleep heart health study. Am J Epidemiol. 2001;154:50–9.

    Article  PubMed  CAS  Google Scholar 

  42. Trzepizur W, Le Vaillant M, Meslier N, Pigeanne T, Masson P, Humeau MP, et al. Independent association between nocturnal intermittent hypoxemia and metabolic dyslipidemia. Chest. 2013;143:1584–9.

    Article  PubMed  CAS  Google Scholar 

  43. Phillips CL, Yee BJ, Marshall NS, Liu PY, Sullivan DR, Grunstein RR. Continuous positive airway pressure reduces postprandial lipidemia in obstructive sleep apnea: a randomized, placebo-controlled crossover trial. Am J Respir Crit Care Med. 2011;184:355–61.

    Article  PubMed  Google Scholar 

  44. Drager LF, Polotsky VY. Lipid metabolism: a new frontier in sleep apnea research. Am J Respir Crit Care Med. 2011;184:288–90.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Briançon-Marjollet A, Monneret D, Henri M, Joyeux-Faure M, Totoson P, Cachot S, et al. Intermittent hypoxia in obese Zucker rats: cardiometabolic and inflammatory effects. Exp Physiol. 2016;101:1432–42.

    Article  PubMed  CAS  Google Scholar 

  46. Li P, Wu J, Zhao L, Feng X. Effects and relationship of intermittent hypoxia on serum lipid levels, hepatic low-density lipoprotein receptor-related protein 1, and hypoxia-inducible factor 1α. Sleep Breath. 2016;20:167–73.

    Article  PubMed  Google Scholar 

  47. Silva LO, Guimarães TM, Luz GP, Coelho G, Badke L, Almeida IR, et al. Metabolic profile in patients with mild obstructive sleep apnea. Metab Syndr Relat Disord. 2018 (in press).

  48. Monneret D, Barthélémy J-C, Hupin D, Maudoux D, Celle S, Sforza E, et al. Serum lipid profile, sleep-disordered breathing and blood pressure in the elderly: a 10-year follow-up of the PROOF-SYNAPSE cohort. Sleep Med. 2017;39:14–22.

    Article  PubMed  Google Scholar 

  49. Qian Y, Yi H, Zou J, Meng L, Tang X, Zhu H, et al. Independent association between sleep fragmentation and dyslipidemia in patients with obstructive sleep apnea. Sci Rep. 2016;6:1–8.

    Article  CAS  Google Scholar 

  50. Shimizu Y, Yoshimine H, Nagayoshi M, Kadota K, Takahashi K, Izumino K, et al. Serum triglyceride levels in relation to high-density lipoprotein cholesterol (TG-HDL) ratios as an efficient tool to estimate the risk of sleep apnea syndrome in non-overweight Japanese men. Environ Health Prev Med Springer Japan. 2016;21:321–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Karadeniz Y, Onat A, Akbaş T, Şimşek B, Yüksel H, Can G. Determinants of obstructive sleep apnea syndrome: pro-inflammatory state and dysfunction of high-density lipoprotein. Nutrition. 2017;43–44:54–60.

    Article  PubMed  CAS  Google Scholar 

  52. Drager LF, Tavoni TM, Silva VM, Santos RD, Pedrosa RP, Bortolotto LA, et al. Obstructive sleep apnea and effects of CPAP on triglyceride-rich lipoprotein metabolism. J Lipid Res. 2018. https://doi.org/10.1194/jlr.M083436.

  53. Koo CY, Drager LF, Sethi R, Ho HH, Hein T, Jim MH, et al. Sleep and stent study investigators. Obstructive sleep apnea and diabetes independently add to cardiovascular risk after coronary revascularization. Diabetes Care. 2018;41(2):e12–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano F. Drager.

Ethics declarations

Conflict of Interest

Lunara S. Freitas, Sofia F. Furlan, and Luciano F. Drager declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sleep and 3D (Cancer, Cardiovascular, Metabolic Diseases)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, L.S., Furlan, S.F. & Drager, L.F. Obstructive Sleep Apnea and Metabolic Risk: an Update. Curr Sleep Medicine Rep 4, 170–177 (2018). https://doi.org/10.1007/s40675-018-0118-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-018-0118-3

Keywords

Navigation