Advertisement

Current Sleep Medicine Reports

, Volume 4, Issue 2, pp 160–169 | Cite as

Interactions of Sleep Apnea, the Autonomic Nervous System, and Its Impact on Cardiac Arrhythmias

  • Fabian Roder
  • Johanna Strotmann
  • Henrik Fox
  • Thomas Bitter
  • Dieter Horstkotte
  • Olaf Oldenburg
Heart Disease and Sleep Disturbances (R Khayat, Section Editor)
  • 47 Downloads
Part of the following topical collections:
  1. Topical Collection on Heart Disease and Sleep Disturbances

Abstract

Purpose of Review

Sleep-disordered breathing (SDB) is an independent risk factor for cardiovascular disease. SDB-related changes in the autonomic nervous system (ANS) and the association between obstructive sleep apnea and atrial fibrillation (Afib) have been extensively researched. SDB has also been associated with occurrence of ventricular arrhythmias. We evaluated the effects of SDB on the ANS and its relationship with ventricular and supraventricular arrhythmias.

Recent Findings

The ANS is an important regulator of the cardiovascular system and contributes to the development of cardiovascular diseases including hypertension and coronary artery disease. SDB has an important influence on the ANS and contributes to electromechanical remodeling of the left atrium via a number of mechanisms, increasing susceptibility to Afib. There is evidence that these mechanisms also affect the ventricular myocardium and therefore lead to ventricular arrhythmias. Effective treatment of SDB reduces the rate of Afib recurrence and seems to reduce ventricular arrhythmogenicity.

Summary

SDB has an important impact on the ANS and therefore plays a major role in the development of cardiac arrhythmias. Although SDB screening of patients with Afib is recommended by current guidelines, SDB remains underdiagnosed. Additional research is needed to clarify the role of SDB and its treatment in ventricular arrhythmias.

Keywords

Sleep-disordered breathing Ventricular arrhythmias Supraventricular arrhythmias Atrial fibrillation Autonomic function 

Notes

Compliance with Ethical Standards

Conflict of Interest

Fabian Roder, Johanna Strotmann, Henrik Fox, Thomas Bitter, Dieter Horstkotte, and Olaf Oldenburg declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3:310–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342:1378–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163:19–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Bitter T, Oldenburg O, Horstkotte D. Schlafbezogene Atmungsstörungen und kardiale Arrhythmien. Somnologie. 2014;18:9–12.CrossRefGoogle Scholar
  5. 5.
    Donovan LM, Kapur VK. Prevalence and characteristics of central compared to obstructive sleep apnea: analyses from the Sleep Heart Health Study Cohort. Sleep. 2016;39:1353–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Oldenburg O, Lamp B, Faber L, Teschler H, Horstkotte D, Töpfer V. Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail. 2007;9:251–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Oldenburg O. Cheyne-Stokes respiration in chronic heart failure. Treatment with adaptive servoventilation therapy. Circ J. 2012;76:2305–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Bitter T, Westerheide N, Prinz C, Hossain MS, Vogt J, Langer C, et al. Cheyne-Stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter-defibrillator therapies in patients with congestive heart failure. Eur Heart J. 2011;32:61–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, et al. Relationship between sleep apnoea and mortality in patients with ischaemic heart failure. Heart. 2009;95:819–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Javaheri S, Shukla R, Zeigler H, Wexler L. Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol. 2007;49:2028–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Hanly PJ, Zuberi-Khokhar NS. Increased mortality associated with Cheyne-Stokes respiration in patients with congestive heart failure. Am J Respir Crit Care Med. 1996;153:272–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Lanfranchi PA, Braghiroli A, Bosimini E, Mazzuero G, Colombo R, Donner CF, et al. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation. 1999;99:1435–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Naughton MT, Kee K. Sleep apnoea in heart failure: to treat or not to treat? Respirology. 2017;22:217–29.PubMedCrossRefGoogle Scholar
  14. 14.
    Javaheri S, Parker TJ, Liming JD, Corbett WS, Nishiyama H, Wexler L, et al. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation. 1998;97:2154–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation. 2004;110:364–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Schnabel RB, Wilde S, Wild PS, Munzel T, Blankenberg S. Atrial fibrillation: its prevalence and risk factor profile in the German general population. Dtsch Arztebl Int. 2012;109:293–9.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285:2370–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Reinhold T, Lindig C, Willich SN, Brüggenjürgen B. The costs of atrial fibrillation in patients with cardiovascular comorbidities-a longitudinal analysis of German health insurance data. Europace. 2011;13:1275–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Gami AS, Hodge DO, Herges RM, Olson EJ, Nykodym J, Kara T, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007;49:565–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Leung RS, Huber MA, Rogge T, Maimon N, Chiu KL, Bradley TD. Association between atrial fibrillation and central sleep apnea. Sleep. 2005;28:1543–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163:19–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;2016(37):2893–962.CrossRefGoogle Scholar
  24. 24.
    Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm. 2012;9(4):632–96.e21.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Bitter T, Nölker G, Vogt J, Prinz C, Horstkotte D, Oldenburg O. Predictors of recurrence in patients undergoing cryoballoon ablation for treatment of atrial fibrillation: the independent role of sleep-disordered breathing. J Cardiovasc Electrophysiol. 2012;23:18–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Kanagala R, Murali NS, Friedman PA, Ammash NM, Gersh BJ, Ballman KV, et al. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation. 2003;107:2589–94.PubMedGoogle Scholar
  28. 28.
    Matiello M, Nadal M, Tamborero D, Berruezo A, Montserrat J, Embid C, et al. Low efficacy of atrial fibrillation ablation in severe obstructive sleep apnoea patients. Europace. 2010;12:1084–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Naruse Y, Tada H, Satoh M, Yanagihara M, Tsuneoka H, Hirata Y, et al. Concomitant obstructive sleep apnea increases the recurrence of atrial fibrillation following radiofrequency catheter ablation of atrial fibrillation: clinical impact of continuous positive airway pressure therapy. Heart Rhythm. 2013;10:331–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Strotmann J, Fox H, Bitter T, Sauzet O, Horstkotte D, Oldenburg O. Characteristics of sleep-disordered breathing in patients with atrial fibrillation and preserved left ventricular ejection fraction. Clin Res Cardiol. 2018;107:120–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Braga B, Poyares D, Cintra F, Guilleminault C, Cirenza C, Horbach S, et al. Sleep-disordered breathing and chronic atrial fibrillation. Sleep Med. 2009;10:212–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Lévy P, Pépin JL, Arnaud C, Tamisier R, Borel JC, Dematteis M, et al. Intermittent hypoxia and sleep-disordered breathing: current concepts and perspectives. Eur Respir J. 2008;32:1082–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Tung P, Levitzky YS, Wang R, Weng J, Quan SF, Gottlieb DJ, et al. Obstructive and central sleep apnea and the risk of incident atrial fibrillation in a community cohort of men and women. J Am Heart Assoc 2017;6.Google Scholar
  34. 34.
    Fox H, Bitter T, Horstkotte D, Oldenburg O. Cardioversion of atrial fibrillation or atrial flutter into sinus rhythm reduces nocturnal central respiratory events and unmasks obstructive sleep apnoea. Clin Res Cardiol. 2016;105:451–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Lavergne F, Morin L, Armitstead J, Benjafield A, Richards G, Woehrle H. Atrial fibrillation and sleep-disordered breathing. J Thorac Dis. 2015;7:E575–84.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Linz D, Denner A, Illing S, Hohl M, Ukena C, Mahfoud F, et al. Impact of obstructive and central apneas on ventricular repolarisation: lessons learned from studies in man and pigs. Clin Res Cardiol. 2016;105:639–47.PubMedCrossRefGoogle Scholar
  37. 37.
    Mehra R, Benjamin EJ, Shahar E, Gottlieb DJ, Nawabit R, Kirchner HL, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study. Am J Respir Crit Care Med. 2006;173:910–6.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lanfranchi PA, Somers VK, Braghiroli A, Corra U, Eleuteri E, Giannuzzi P. Central sleep apnea in left ventricular dysfunction: prevalence and implications for arrhythmic risk. Circulation. 2003;107:727–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Gami AS, Howard DE, Olson EJ, Somers VK. Day-night pattern of sudden death in obstructive sleep apnea. N Engl J Med. 2005;352:1206–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Bitter T, Horstkotte D, Oldenburg O. Sleep disordered breathing and cardiac arrhythmias: mechanisms, interactions, and clinical relevance. Dtsch Med Wochenschr. 2011;136:431–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Dimitri H, Ng M, Brooks AG, Kuklik P, Stiles MK, Lau DH, et al. Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation. Heart Rhythm. 2012;9:321–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60:172–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Linz D, Schotten U, Neuberger HR, Böhm M, Wirth K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm. 2011;8:1436–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Kasai T, Bradley TD. Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J Am Coll Cardiol. 2011;57:119–27.PubMedCrossRefGoogle Scholar
  45. 45.
    Ravelli F, Allessie M. Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation. 1997;96:1686–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Eijsbouts SC, Majidi M, van Zandvoort M, Allessie MA. Effects of acute atrial dilation on heterogeneity in conduction in the isolated rabbit heart. J Cardiovasc Electrophysiol. 2003;14:269–78.PubMedCrossRefGoogle Scholar
  47. 47.
    Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91:265–325.PubMedCrossRefGoogle Scholar
  48. 48.
    Orban M, Bruce CJ, Pressman GS, Leinveber P, Romero-Corral A, Korinek J, et al. Dynamic changes of left ventricular performance and left atrial volume induced by the Mueller maneuver in healthy young adults and implications for obstructive sleep apnea, atrial fibrillation, and heart failure. Am J Cardiol. 2008;102:1557–61.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Linz D, Schotten U, Neuberger HR, Böhm M, Wirth K. Combined blockade of early and late activated atrial potassium currents suppresses atrial fibrillation in a pig model of obstructive apnea. Heart Rhythm. 2011;8:1933–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang L, Hou Y, Po SS. Obstructive sleep apnoea and atrial fibrillation. Arrhythm Electrophysiol Rev. 2015;4:14–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lammers WJ, Kirchhof C, Bonke FI, Allessie MA. Vulnerability of rabbit atrium to reentry by hypoxia. Role of inhomogeneity in conduction and wavelength. Am J Phys. 1992;262:H47–55.Google Scholar
  52. 52.
    Lin YK, Lai MS, Chen YC, Cheng CC, Huang JH, Chen SA, et al. Hypoxia and reoxygenation modulate the arrhythmogenic activity of the pulmonary vein and atrium. Clin Sci (Lond). 2012;122:121–32.CrossRefGoogle Scholar
  53. 53.
    Lévy P, Pépin JL, Arnaud C, Tamisier R, Borel JC, Dematteis M, et al. Intermittent hypoxia and sleep-disordered breathing: current concepts and perspectives. Eur Respir J. 2008;32:1082–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Korantzopoulos P, Kolettis TM, Galaris D, Goudevenos JA. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int J Cardiol. 2007;115:135–43.PubMedCrossRefGoogle Scholar
  55. 55.
    Castell JV, Gómez-Lechón MJ, David M, Fabra R, Trullenque R, Heinrich PC. Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. Hepatology. 1990;12:1179–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Shamsuzzaman AS, Winnicki M, Lanfranchi P, Wolk R, Kara T, Accurso V, et al. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation. 2002;105:2462–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Schoonderwoerd BA, Smit MD, Pen L, Van Gelder IC. New risk factors for atrial fibrillation: causes of ‘not-so-lone atrial fibrillation’. Europace. 2008;10:668–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Stevenson IH, Roberts-Thomson KC, Kistler PM, Edwards GA, Spence S, Sanders P, et al. Atrial electrophysiology is altered by acute hypercapnia but not hypoxemia: implications for promotion of atrial fibrillation in pulmonary disease and sleep apnea. Heart Rhythm. 2010;7:1263–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Bonsignore MR, Borel AL, Machan E, Grunstein R. Sleep apnoea and metabolic dysfunction. Eur Respir Rev. 2013;22:353–64.PubMedCrossRefGoogle Scholar
  60. 60.
    Punjabi NM, Beamer BA. Alterations in glucose disposal in sleep-disordered breathing. Am J Respir Crit Care Med. 2009;179:235–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Pamidi S, Wroblewski K, Broussard J, Day A, Hanlon EC, Abraham V, et al. Obstructive sleep apnea in young lean men: impact on insulin sensitivity and secretion. Diabetes Care. 2012;35:2384–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lévy P, Bonsignore MR, Eckel J. Sleep, sleep-disordered breathing and metabolic consequences. Eur Respir J. 2009;34:243–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354:1435–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141:846–50.PubMedCrossRefGoogle Scholar
  65. 65.
    Lam DC, Lam KS, Ip MS. Obstructive sleep apnoea, insulin resistance and adipocytokines. Clin Endocrinol. 2015;82:165–77.CrossRefGoogle Scholar
  66. 66.
    Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Dublin S, French B, Glazer NL, Wiggins KL, Lumley T, Psaty BM, et al. Risk of new-onset atrial fibrillation in relation to body mass index. Arch Intern Med. 2006;166:2322–8.PubMedCrossRefGoogle Scholar
  68. 68.
    •• Linz D, Linz B, Hohl M, Böhm M. Atrial arrhythmogenesis in obstructive sleep apnea: Therapeutic implications. Sleep Med Rev. 2016;26:87–94. This recent review provides an overview on obstructive sleep apnea and its pathomechanisms which may lead to the development of atrial fibrillation, including the autonomic nervous system PubMedCrossRefGoogle Scholar
  69. 69.
    Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342:1378–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Dudenbostel T, Calhoun DA. Resistant hypertension, obstructive sleep apnoea and aldosterone. J Hum Hypertens. 2012;26:281–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Choisy SC, Arberry LA, Hancox JC, James AF. Increased susceptibility to atrial tachyarrhythmia in spontaneously hypertensive rat hearts. Hypertension. 2007;49:498–505.PubMedCrossRefGoogle Scholar
  72. 72.
    Kistler PM, Sanders P, Dodic M, Spence SJ, Samuel CS, Zhao C, et al. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur Heart J. 2006;27:3045–56.PubMedCrossRefGoogle Scholar
  73. 73.
    • Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114:1500–15. This is a detailed review of the autonomic nervous system describing its impact on atrial arrhythmogenesis as well as therapeutic implications by neuromodulation. PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247:289–98.PubMedCrossRefGoogle Scholar
  75. 75.
    Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57:299–309.PubMedCrossRefGoogle Scholar
  76. 76.
    Somers VK, Mark AL, Zavala DC, Abboud FM. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J Appl Physiol (1985). 1989;67:2095–100.CrossRefGoogle Scholar
  77. 77.
    Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003;177(3):385–90.PubMedCrossRefGoogle Scholar
  78. 78.
    Somers VK, Dyken ME, Skinner JL. Autonomic and hemodynamic responses and introduction during the Mueller maneuver in humans. J Auton Nerv Syst. 1993;44:253–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Taranto Montemurro L, Floras JS, Picton P, Kasai T, Alshaer H, Gabriel JM, et al. Relationship of heart rate variability to sleepiness in patients with obstructive sleep apnea with and without heart failure. J Clin Sleep Med. 2014;10:271–6.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–904.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Naughton MT, Floras JS, Rahman MA, Jamal M, Bradley TD. Respiratory correlates of muscle sympathetic nerve activity in heart failure. Clin Sci (Lond). 1998;95:277–85.CrossRefGoogle Scholar
  82. 82.
    Butler PJ, Jones DR. Physiology of diving of birds and mammals. Physiol Rev. 1997;77:837–99.PubMedCrossRefGoogle Scholar
  83. 83.
    Yu L, Li X, Huang B, Zhou X, Wang M, Zhou L, et al. Atrial fibrillation in acute obstructive sleep apnea: autonomic nervous mechanism and modulation. J Am Heart Assoc 2017;6.Google Scholar
  84. 84.
    Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR, et al. Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension. 2013;61:225–31.PubMedCrossRefGoogle Scholar
  85. 85.
    Yu L, Scherlag BJ, Li S, Sheng X, Lu Z, Nakagawa H, et al. Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. J Cardiovasc Electrophysiol. 2011;22:455–63.PubMedCrossRefGoogle Scholar
  86. 86.
    Linz D, van Hunnik A, Ukena C, Ewen S, Mahfoud F, Schirmer SH, et al. Renal denervation: effects on atrial electrophysiology and arrhythmias. Clin Res Cardiol. 2014;103:765–74.PubMedCrossRefGoogle Scholar
  87. 87.
    Salavatian S, Beaumont E, Longpré JP, Armour JA, Vinet A, Jacquemet V, et al. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. Am J Physiol Heart Circ Physiol. 2016;311:H1311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Katritsis DG, Giazitzoglou E, Zografos T, Pokushalov E, Po SS, Camm AJ. Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm. 2011;8:672–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Numata A, Miyauchi Y, Ono N, Fishbein MC, Mandel WJ, Lin SF, et al. Spontaneous atrial fibrillation initiated by tyramine in canine atria with increased sympathetic nerve sprouting. J Cardiovasc Electrophysiol. 2012;23:415–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Burashnikov A, Antzelevitch C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early after depolarization-induced triggered activity. Circulation. 2003;107:2355–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Belhassen B. Continuous positive airway pressure after circumferential pulmonary vein isolation: the recipe for improving the success rate of ablation in patients with obstructive sleep apnea and atrial fibrillation? J Am Coll Cardiol. 2013;62:306–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Naughton MT, Benard DC, Liu PP, Rutherford R, Rankin F, Bradley TD. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am J Respir Crit Care Med. 1995;152:473–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Leung RS, Diep TM, Bowman ME, Lorenzi-Filho G, Bradley TD. Provocation of ventricular ectopy by Cheyne-Stokes respiration in patients with heart failure. Sleep. 2004;27:1337–43.PubMedCrossRefGoogle Scholar
  95. 95.
    Naughton MT. Cheyne-Stokes respiration: friend or foe? Thorax. 2012;67:357–60.PubMedCrossRefGoogle Scholar
  96. 96.
    Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348:2007–18.PubMedCrossRefGoogle Scholar
  97. 97.
    Miyata M, Yoshihisa A, Suzuki S, Yamada S, Kamioka M, Kamiyama Y, et al. Adaptive servo ventilation improves Cheyne-Stokes respiration, cardiac function, and prognosis in chronic heart failure patients with cardiac resynchronization therapy. J Cardiol. 2012;60:222–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Oldenburg O, Schmidt A, Lamp B, Bitter T, Muntean BG, Langer C, et al. Adaptive servoventilation improves cardiac function in patients with chronic heart failure and Cheyne-Stokes respiration. Eur J Heart Fail. 2008;10:581–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373:1095–105.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Sands SA, Edwards BA, Kee K, Turton A, Skuza EM, Roebuck T, et al. Loop gain as a means to predict a positive airway pressure suppression of Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med. 2011;184:1067–75.PubMedCrossRefGoogle Scholar
  101. 101.
    Sin DD, Logan AG, Fitzgerald FS, Liu PP, Bradley TD. Effects of continuous positive airway pressure on cardiovascular outcomes in heart failure patients with and without Cheyne-Stokes respiration. Circulation. 2000;102:61–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Nakao YM, Ueshima K, Yasuno S, Sasayama S. Effects of nocturnal oxygen therapy in patients with chronic heart failure and central sleep apnea: CHF-HOT study. Heart Vessel. 2016;31:165–72.CrossRefGoogle Scholar
  103. 103.
    Yoshihisa A, Suzuki S, Yamaki T, Sugimoto K, Kunii H, Nakazato K, et al. Impact of adaptive servo-ventilation on cardiovascular function and prognosis in heart failure patients with preserved left ventricular ejection fraction and sleep-disordered breathing. Eur J Heart Fail. 2013;15:543–50.PubMedCrossRefGoogle Scholar
  104. 104.
    Pokorney D, Tasissa G, Anstrom K, Oldenburg O, Punjabi N, Fiuzat M, et al. Adaptive servo-ventilation reduces atrial fibrillation burden in patients with heart failure and sleep apnea: results from the CAT-HF Arrhythmia Substudy. Late-Breaking Clinical Trial update. Presented at: Heart Failure Society of America Scientific Assembly. 2016; Orlando, FL, USA.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fabian Roder
    • 1
  • Johanna Strotmann
    • 1
  • Henrik Fox
    • 1
  • Thomas Bitter
    • 1
  • Dieter Horstkotte
    • 1
  • Olaf Oldenburg
    • 1
  1. 1.Clinic for Cardiology, Herz- und Diabeteszentrum NRWRuhr-Universität BochumBad OeynhausenGermany

Personalised recommendations