Skip to main content

Advertisement

Log in

Reproductive Issues in Males with SLE

  • Lupus (S Keeling, Section Editor)
  • Published:
Current Treatment Options in Rheumatology Aims and scope Submit manuscript

Opinion statement

Purpose of review Sexual function and fertility are neglected topics in men with systemic lupus erythematosus (SLE) in the literature. This review examines the impact of SLE and its treatment on fertility and erectile function.

Recent findings Systemic illness, such as chronic kidney disease, and drugs used in SLE are associated with male infertility and sexual dysfunction through changes at the level of the hypothalamic-pituitary axis and direct testicular damage. In SLE patients, evidence shows a dose-dependent gonadotoxicity associated with intravenous (IV) cyclophosphamide (CYC). In contrast, recent observational studies evaluating disease-modifying anti-rheumatic drugs, non-steroidal anti-inflammatory drugs, and corticosteroids have found little evidence suggesting a significant impact of paternal exposure on fertility or pregnancy outcomes. In most patients, infertility management is focused on controlling SLE disease activity, minimizing the dose of gonadotoxic medications and cryopreserving sperm prior to treatment with IV CYC.

Summary Reproductive issues are not uncommon in males with SLE. Understanding the impact of disease activity and drug effects on reproductive health may avert irreversible infertility and improve patient quality of life. However, additional studies are required to further explore the impact of SLE and its treatment on male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lu LJ, et al. Review: male systemic lupus erythematosus: a review of sex disparities in this disease. Lupus. 2009;19(2):119–29.

    Article  PubMed  Google Scholar 

  2. Tan TC, et al. Differences between male and female systemic lupus erythematosus in a multiethnic population. J Rheumatol. 2012;39(4):759.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andrade RM, et al. Accelerated damage accrual among men with systemic lupus erythematosus: XLIV. Results from a multiethnic US cohort. Arthritis Rheum. 2007;56(2):622–30.

    Article  PubMed  Google Scholar 

  4. Murphy G, Isenberg D. Effect of gender on clinical presentation in systemic lupus erythematosus. Rheumatology (Oxford). 2013;52(12):2108–15.

    Article  Google Scholar 

  5. Mok CC, Lau CS. Profile of sex hormones in male patients with systemic lupus erythematosus. Lupus. 2000;9(4):252–7.

    Article  CAS  PubMed  Google Scholar 

  6. Athreya BHB. Adenohypophyseal and sex hormones in pediatric rheumatic diseases. J Rheumatol. 20(4):725–30.

  7. Vilarinho STS. Evaluation of the hypothalamic-pituitary-gonadal axis in males with systemic lupus erythematosus. J Rheumatol. 25(6):1097–103.

  8. Soares PMF, et al. Gonad evaluation in male systemic lupus erythematosus. Arthritis & Rheumatism. 2007;56(7):2352–61.

    Article  Google Scholar 

  9. Suehiro RM, et al. Testicular Sertoli cell function in male systemic lupus erythematosus. Rheumatology. 2008;47(11):1692–7.

    Article  CAS  PubMed  Google Scholar 

  10. D'Cruz OJ, Haas GG, Reichlin M. Autoantibodies to decondensed sperm nuclear deoxyribonucleic acid in patients with antisperm antibodies and systemic lupus erythematosus detected by immunofluorescence flow cytometry. Fertil Steril. 1994;62(4):834–44.

    Article  PubMed  Google Scholar 

  11. Shiraishi Y, et al. Incidence of antisperm antibodies in males with systemic autoimmune diseases. Am J Reprod Immunol. 2009;61(3):183–9.

    Article  PubMed  Google Scholar 

  12. Rovin, B.H. and I.E. Stillman, Chapter 42 - Kidney A2- Lahita, Robert G. 2011, Academic Press: San Diego. p. 769–814.

  13. de Carvalho JF, et al. Male gender results in more severe lupus nephritis. Rheumatol Int. 2010;30(10):1311–5.

    Article  PubMed  Google Scholar 

  14. Hanly JG, et al. The frequency and outcome of lupus nephritis: results from an international inception cohort study. Rheumatology (Oxford). 2016;55(2):252–62.

    Article  Google Scholar 

  15. Palmer BF, Clegg DJ. Gonadal dysfunction in chronic kidney disease. 2017;18(1):117–30.

  16. Handelsman DJ. Hypothalamic-pituitary gonadal dysfunction in renal failure, dialysis and renal transplantation. Endocr Rev. 1985;6(2):151–82.

    Article  CAS  PubMed  Google Scholar 

  17. Rathi M, Ramachandran R. Sexual and gonadal dysfunction in chronic kidney disease: pathophysiology. Indian Journal of Endocrinology and Metabolism. 2012;16(2):214–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rabelo-Júnior CN, et al. Penile alterations with severe sperm abnormalities in antiphospholipid syndrome associated with systemic lupus erythematosus. Clin Rheumatol. 2013;32(1):109–13.

    Article  PubMed  Google Scholar 

  19. Dillon SP, et al. Sex chromosome aneuploides among men with systemic lupus erythematosus. J Autoimmun. 2012;38(2–3):J129–34.

    Article  CAS  PubMed  Google Scholar 

  20. Maiburg M, Repping S, Giltay J. The genetic origin of Klinefelter syndrome and its effect on spermatogenesis. Fertil Steril. 2012;98(2):253–60.

    Article  PubMed  Google Scholar 

  21. Rivkees SA, Crawford JD. THe relationship of gonadal activity and chemotherapy-induced gonadal damage. JAMA. 1988;259(14):2123–5.

    Article  CAS  PubMed  Google Scholar 

  22. Buchanan JD, Fairley KF, Barrie JU. Return of spermatogenesis after stopping cyclophosphamide after therapy. Lancet. 1975;306(7926):156–7. Originally published as Volume 1, Issue 7926

    Article  Google Scholar 

  23. • Houssiau FA, et al. Immunosuppressive therapy in lupus nephritis: The Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002;46(8):2121–31. An important trial that established that a low-dose and therefore less gonadotoxic cyclophosphamide regimen appears as effective as higher dose regimens in the treatment of lupus nephritis.

    Article  CAS  PubMed  Google Scholar 

  24. The, A.T.G, et al. Treatment of lupus nephritis with abatacept: the abatacept and cyclophosphamide combination efficacy and safety study. Arthritis & rheumatology (Hoboken, NJ). 2014;66(11):3096–104.

    Google Scholar 

  25. Gajjar R, et al. Fertility preservation in patients receiving cyclophosphamide therapy for renal disease. Pediatr Nephrol. 2015;30(7):1099–106.

    Article  PubMed  Google Scholar 

  26. • Lee SJ, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24(18):2917–31. A review detailing the feasibility of future fertility restoration through autologous transplantation of cryopreserved spermatogonial stem cells (SSCs).

    Article  PubMed  Google Scholar 

  27. Mersereau J, Dooley MA. Gonadal failure with cyclophosphamide therapy for lupus nephritis: advances in fertility preservation. Rheum Dis Clin N Am. 2010;36(1):99–108. viii

    Article  Google Scholar 

  28. Ginsberg JP, et al. An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Human Reproduction (Oxford, England). 2010;25(1):37–41.

    Article  CAS  Google Scholar 

  29. Onofre J, et al. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update. 2016;22(6):744–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Russell JA, Powles RL, Oliver RT. Conception and congenital abnormalities after chemotherapy of acute myelogenous leukaemia in two men. BMJ. 1976;1(6024):1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janssen NM, Genta MS. THe effects of immunosuppressive and anti-inflammatory medications on fertility, pregnancy, and lactation. Arch Intern Med. 2000;160(5):610–9.

    Article  CAS  PubMed  Google Scholar 

  32. Østensen M, et al. Anti-inflammatory and immunosuppressive drugs and reproduction. Arthritis Research & Therapy. 2006;8(3):209.

    Article  Google Scholar 

  33. Hinkes E, Plotkin D. Reversible drug-induced sterility in a patient with acute leukemia. JAMA. 1973;223(13):1490–1.

    Article  CAS  PubMed  Google Scholar 

  34. Sussman A, Leonard JM. Psoriasis, methotrexate, and oligospermia. Arch Dermatol. 1980;116(2):215–7.

    Article  CAS  PubMed  Google Scholar 

  35. El-Beheiry A, et al. Methotrexate and fertility in men. Arch Androl. 1979;3(2):177–9.

    Article  CAS  PubMed  Google Scholar 

  36. Silva CA, Bonfa E, ØStensen M. Maintenance of fertility in patients with rheumatic diseases needing antiinflammatory and immunosuppressive drugs. Arthritis Care & Research. 2010;62(12):1682–90.

    Article  Google Scholar 

  37. Aguirre MA, et al. Gynecomastia and sexual impotence associated with methotrexate treatment. J Rheumatol. 2002;29(8):1793–4.

    PubMed  Google Scholar 

  38. Wylie G, Evans CD, Gupta G. Reduced libido and erectile dysfunction: rarely reported side-effects of methotrexate. Clin Exp Dermatol. 2009;34(7):e234.

    Article  CAS  PubMed  Google Scholar 

  39. Weber-Schoendorfer C, et al. No evidence for an increased risk of adverse pregnancy outcome after paternal low-dose methotrexate: an observational cohort study. Rheumatology. 2014;53(4):757–63.

    Article  CAS  PubMed  Google Scholar 

  40. • Wallenius M, et al. Brief report: no excess risks in offspring with paternal preconception exposure to disease-modifying antirheumatic drugs. Arthritis & Rheumatology. 2015;67(1):296–301. A Norwegian registry study revealing no impact of paternal exposure to DMARDs (mainly MTX) on pregnancy and fetal outcomes.

    Article  CAS  Google Scholar 

  41. Dejaco C, et al. Azathioprine treatment and male fertility in inflammatory bowel disease. Gastroenterology. 2001;121(5):1048–53.

    Article  CAS  PubMed  Google Scholar 

  42. Xu L, et al. The influence of immunosuppressants on the fertility of males who undergo renal transplantation and on the immune function of their offspring. Transpl Immunol. 2009;22(1–2):28–31.

    Article  CAS  PubMed  Google Scholar 

  43. Nørgård B, et al. The risk of congenital abnormalities in children fathered by men treated with azathioprine or mercaptopurine before conception. Aliment Pharmacol Ther. 2004;19(6):679–85.

    Article  PubMed  Google Scholar 

  44. CellCept® (mycophenolate mofetil) [product monograph on the Internet]. Mississauga (ON): Hoffmann-La Roche Ltd [revised 2016]. Available from: http://www.rochecanada.com/content/dam/roche_canada/en_CA/documents/Research/ClinicalTrialsForms/Products/ConsumerInformation/MonographsandPublicAdvisories/CellCept/CellCept_PM_E.pdf

  45. Myfortic® (Mycophenolic acid enteric-coated tablets 180 mg, 360 mg (as mycophenolate sodium)) [product monograph on the Internet]. Dorval (QC): Novartis Pharmaceuticals Canada Inc. 2005 [revised 2016]. Available from: https://www.ask.novartispharma.ca/download.htm?res=myfortic_scrip_e.pdf&resTitleId=805

  46. Jones A, et al. Outcomes of pregnancies fathered by solid-organ transplant recipients exposed to mycophenolic acid products. Prog Transplant. 2013;23(2):153–7.

    Article  PubMed  Google Scholar 

  47. Morken NH, et al. Obstetric and neonatal outcome of pregnancies fathered by males on immunosuppression after solid organ transplantation. Am J Transplant. 2015;15(6):1666–73.

    Article  PubMed  Google Scholar 

  48. Kamischke A, et al. Testosterone levels in men with chronic obstructive pulmonary disease with or without glucocorticoid therapy. Eur Respir J. 1998;11(1):41.

    Article  CAS  PubMed  Google Scholar 

  49. Odell WD. Testosterone treatment of men treated with glucocorticoids. Arch Intern Med. 1996;156(11):1133–4.

    Article  CAS  PubMed  Google Scholar 

  50. Mac AM, White RH, Chipps BE. Reduction of serum testosterone levels during chronic glucocorticoid therapy. Ann Intern Med. 1986;104(5):648–51.

    Article  Google Scholar 

  51. Martini AC, et al. Analysis of semen from patients chronically treated with low or moderate doses of aspirin-like drugs. Fertil Steril. 2003;80(1):221–2.

    Article  PubMed  Google Scholar 

  52. Gleason JM, et al. Regular nonsteroidal anti-inflammatory drug use and erectile dysfunction. J Urol. 2011;185(4):1388–93.

    Article  CAS  PubMed  Google Scholar 

  53. Shiri R, et al. Effect of nonsteroidal anti-inflammatory drug use on the incidence of erectile dysfunction. J Urol. 2006;175(5):1812–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Vinet MD, PhD.

Ethics declarations

Conflict of Interest

Omid Zahedi Niaki declares that he has no conflict of interest.

Sasha Bernatsky declares that she has no conflict of interest.

Evelyne Vinet declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lupus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedi Niaki, O., Bernatsky, S. & Vinet, E. Reproductive Issues in Males with SLE. Curr Treat Options in Rheum 3, 173–180 (2017). https://doi.org/10.1007/s40674-017-0068-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40674-017-0068-9

Keywords

Navigation