Predictive hypotheses are ineffectual in resolving complex biochemical systems

Original Paper
  • 79 Downloads

Abstract

Scientific hypotheses may either predict particular unknown facts or accommodate previously-known data. Although affirmed predictions are intuitively more rewarding than accommodations of established facts, opinions divide whether predictive hypotheses are also epistemically superior to accommodation hypotheses. This paper examines the contribution of predictive hypotheses to discoveries of several bio-molecular systems. Having all the necessary elements of the system known beforehand, an abstract predictive hypothesis of semiconservative mode of DNA replication was successfully affirmed. However, in defining the genetic code whose biochemical basis was unclear, hypotheses were only partially effective and supplementary experimentation was required for its conclusive definition. Markedly, hypotheses were entirely inept in predicting workings of complex systems that included unknown elements. Thus, hypotheses did not predict the existence and function of mRNA, the multiple unidentified components of the protein biosynthesis machinery, or the manifold unknown constituents of the ubiquitin–proteasome system of protein breakdown. Consequently, because of their inability to envision unknown entities, predictive hypotheses did not contribute to the elucidation of complex systems. As data-based accommodation theories remained the sole instrument to explain complex bio-molecular systems, the philosophical question of alleged advantage of predictive over accommodative hypotheses became inconsequential.

Keywords

Predictive hypotheses Accommodation hypotheses Complex bio-molecular systems DNA replication Genetic code Messenger RNA 

Notes

Acknowledgements

The author is indebted to the two anonymous reviewers and to the editor for their insightful comments.

References

  1. Achinstein, P. (1994). Explanation v. prediction: Which carries more weight? Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1994, 156–164.CrossRefGoogle Scholar
  2. Appelmans, F., Wattiaux, R., & De Duve, C. (1955). Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochemical Journal, 59(3), 438–445.CrossRefGoogle Scholar
  3. Avery, O. T., Macleod, C. M., & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. The Journal of Experimental Medicine, 79(2), 137–158.CrossRefGoogle Scholar
  4. Baker, A. (2003). Quantitative parsimony and explanatory power. The British Journal for the Philosophy of Science, 54(2), 245–259.CrossRefGoogle Scholar
  5. Baker, A. (2007). Occam’s razor in science: A case study from biogeography. Biology and Philosophy, 22(2), 193–215.CrossRefGoogle Scholar
  6. Baker, A. (2016). Simplicity. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford: Stanford University Center for the Study of Language and Information. https://plato.stanford.edu/entries/simplicity/.
  7. Barnes, E. (1996). Thoughts on Maher’s predictivism. Philosophy of Science, 63(3), 401–410.CrossRefGoogle Scholar
  8. Barnes, E. (2005). On Mendeleev’s predictions: Comment on Scerri and Worrall. Studies in History and Philosophy of Science Part A, 36(4), 801–812.CrossRefGoogle Scholar
  9. Beadle, G. W., & Tatum, E. L. (1941). Genetic control of biochemical reactions in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 27(11), 499–506.CrossRefGoogle Scholar
  10. Belozersky, A. N., & Spirin, A. S. (1958). A correlation between the compositions of deoxyribonucleic and ribonucleic acids. Nature, 182(4628), 111–112.CrossRefGoogle Scholar
  11. Benzer, S. (1955). Fine structure of a genetic region in bacteriophage. Proceedings of the National Academy of Sciences of the United States of America, 41(6), 344–354.CrossRefGoogle Scholar
  12. Benzer, S. (1961). On the topography of the genetic fine structure. Proceedings of the National Academy of Sciences of the United States of America, 47(3), 403–415.CrossRefGoogle Scholar
  13. Bergmann, M. (1942). A classification of proteolytic enzymes. Advances in Enzymology, 2, 49–68.Google Scholar
  14. Bergmann, M., & Fraenkel-Conrat, H. (1937). The rôle of specificity in the enzymatic synthesis of proteins: Synthesis with intracellular enzymes. The Journal of Biological Chemistry, 119(2), 707–720.Google Scholar
  15. Bergmann, M., & Fruton, J. S. (1938). Some synthetic and hydrolytic experiments with chymotrypsin. The Journal of Biological Chemistry, 124(1), 321–329.Google Scholar
  16. Bergmann, M., & Fruton, J. S. (1941). The specificity of proteinases. Advances in Enzymology, 1, 63–98.Google Scholar
  17. Beynon, R. J., & Bond, J. S. (1986). Catabolism of intracellular protein: Molecular aspects. American Journal of Physiology—Cell Physiology, 251(2), C141–C152.CrossRefGoogle Scholar
  18. Bhattacharyya, S., Yu, H., Mim, C., & Matouschek, A. (2014). Regulated protein turnover: Snapshots of the proteasome in action. Nature Reviews Molecular Cell Biology, 15(2), 122–133.CrossRefGoogle Scholar
  19. Bloch, D. P. (1955). A possible mechanism for the replication of the helical structure of desoxyribonucleic acid. Proceedings of the National Academy of Sciences of the United States of America, 41(12), 1058–1064.CrossRefGoogle Scholar
  20. Boivin, A. (1947). Directed mutation in colon bacilli, by inducing principle of desoxynucleic acid nature: Its meaning for the general biochemistry of heredity. Cold Spring Harbor Symposia on Quantitative Biology, 12, 7–17.CrossRefGoogle Scholar
  21. Borsook, H., & Dubnoff, J. W. (1940). The biological synthesis of hippouric acid in vitro. The Journal of Biological Chemistry, 132(1), 307–324.Google Scholar
  22. Borsook, H., & Huffman, H. H. (1938). Some thermodynamical considerations of amino acids, peptides and related substances. In C. L. A. Schmidt (Ed.), Chemistry of the amino acids and proteins (p. 865). Springfield, IL: Thomas Publishing Co.Google Scholar
  23. Brachet, J. (1947). The metabolism of nucleic acids during embryonic development. Cold Spring Harbor Symposia on Quantitative Biology, 12, 18–27.CrossRefGoogle Scholar
  24. Brachet, J. (1950). The localization and the role of ribonucleic acid in the cell. Annals of the New York Academy of Sciences, 50(8), 861–869.CrossRefGoogle Scholar
  25. Brachet, J. (1955). Recherches sur les interactions biochimiques entre le noyau et le cytoplasme chez les organismes unicellulaires. I. Amoeba proteus. Biochimica et Biophysica Acta, 18(2), 247–268.CrossRefGoogle Scholar
  26. Brenner, S. (1957). On the impossibility of all overlapping triplet codes in information transfer from nucleic acid to proteins. Proceedings of the National Academy of Sciences of the United States of America, 43(8), 687–694.CrossRefGoogle Scholar
  27. Brenner, S., Barnett, L., Crick, F. H. C., & Orgel, A. (1961a). The theory of mutagenesis. Journal of Molecular Biology, 3(1), 121–124.CrossRefGoogle Scholar
  28. Brenner, S., Jacob, F., & Meselson, M. (1961b). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 190(4776), 576–581.CrossRefGoogle Scholar
  29. Brush, S. G. (1989). Prediction and theory evaluation: The case of light bending. Science, 246(4934), 1124–1129.CrossRefGoogle Scholar
  30. Brush, S. G. (1990). Prediction and theory evaluation: Alfven on space plasma phenomena. EOS. Transactions of the American Geophysical Union, 71(2), 19–33.CrossRefGoogle Scholar
  31. Brush, S. G. (1993). Prediction and theory evaluation: Cosmic microwaves and the revival of the Big Bang. Perspectives on Science, 1(4), 565–602.Google Scholar
  32. Brush, S. G. (1994). Dynamics of theory change: The role of predictions. Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1994, 133–145.CrossRefGoogle Scholar
  33. Brush, S. G. (1996). The reception of Mendeleev’s periodic law in America and Britain. Isis, 87(4), 595–628.CrossRefGoogle Scholar
  34. Butler, J. A. (1956). The action of ionizing radiations on biological materials; facts and theories. Radiation Research, 4(1), 20–32.CrossRefGoogle Scholar
  35. Caldwell, P. C., & Hinshelwood, C. (1950). Some considerations on autosynthesis in bacteria. Journal of the Chemical Society, 4, 3156–3159.CrossRefGoogle Scholar
  36. Caspersson, T. (1947). The relations between nucleic acid and protein synthesis. Symposium of the Society for Experimental Biology, 1, 127–151.Google Scholar
  37. Caspersson, T., & Schultz, J. (1938). Nucleic acid metabolism of the chromosomes in relation to gene reproduction. Nature, 142(3589), 294–295.CrossRefGoogle Scholar
  38. Caspersson, T., & Schultz, J. (1939). Pentose nucleotides in the cytoplasm of growing tissues. Nature, 143(3623), 602–603.CrossRefGoogle Scholar
  39. Cavalieri, L. F., Rosenberg, B. H., & Deutsch, J. F. (1959). The subunit of deoxyribonucleic acid. Biochemical and Biophysical Research Communications, 1(3), 124–128.CrossRefGoogle Scholar
  40. Chapeville, F., Lipmann, F., Von Ehrenstein, G., Weisblum, B., Ray, W. J., Jr., & Benzer, S. (1962). On the role of soluble ribonucleic acid in coding for amino acids. Proceedings of the National Academy of Sciences of the United States of America, 48(6), 1086–1092.CrossRefGoogle Scholar
  41. Ciechanover, A. (2005). Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting[ast]. Cell Death and Differentiation, 12(9), 1178–1190.CrossRefGoogle Scholar
  42. Ciechanover, A., Heller, H., Elias, S., Haas, A. L., & Hershko, A. (1980). ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 77(3), 1365–1368.CrossRefGoogle Scholar
  43. Ciechanover, A., Heller, H., Katz-Etzion, R., & Hershko, A. (1981). Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proceedings of the National Academy of Sciences of the United States of America, 78(2), 761–765.CrossRefGoogle Scholar
  44. Ciehanover, A., Hod, Y., & Hershko, A. (1978). A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochemical and Biophysical Research Communications, 81(4), 1100–1105.CrossRefGoogle Scholar
  45. Claude, A. (1943). The constitution of protoplasm. Science, 97(2525), 451–456.CrossRefGoogle Scholar
  46. Collins, R. (1994). Against the epistemic value of prediction over accommodation. Noûs, 28(2), 210–224.CrossRefGoogle Scholar
  47. Coux, O., Tanaka, K., & Goldberg, A. L. (1996). Structure and functions of the 20S and 26S proteasomes. Annual Review of Biochemistry, 65(1), 801–847.CrossRefGoogle Scholar
  48. Creager, A. N., & Morgan, G. J. (2008). After the double helix: Rosalind Franklin’s research on Tobacco Mosaic Virus. Isis, 99(2), 239–272.CrossRefGoogle Scholar
  49. Crick, F. H. (1958). On protein synthesis. Symposium of the Society for Experimental Biology, 12, 138–163.Google Scholar
  50. Crick, F. H. (1959). Biochemical activities of nucleic acids. The present position of the coding problem. Brookhaven Symposia in Biology, 12, 35–39.Google Scholar
  51. Crick, F. H., Barnett, L., Brenner, S., & Watts-Tobin, R. J. (1961). General nature of the genetic code for proteins. Nature, 192(4809), 1227–1232.CrossRefGoogle Scholar
  52. Crick, F. H., Griffith, J. S., & Orgel, L. E. (1957). Codes without commas. Proceedings of the National Academy of Sciences of the United States of America, 43(5), 416–421.CrossRefGoogle Scholar
  53. Crick, F. H., & Watson, J. D. (1956a). Structure of small viruses. Nature, 177(4506), 473–475.CrossRefGoogle Scholar
  54. Crick, F. H., & Watson, J. D. (1956b). Virus structure: General principles. In G. E. Wolstenholme & E. C. P. Millar (Eds.), Ciba foundation symposium—The nature of viruses. New York: Wiley.Google Scholar
  55. Darden, L. (2006). Reasoning in biological discoveries: Assays on mechanisms, interfield relations, and anomaly resolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  56. Davern, C. I., & Meselson, M. (1960). The molecular conservation of ribonucleic acid during bacterial growth. Journal of Molecular Biology, 2(3), 153–160.CrossRefGoogle Scholar
  57. Delbruck, M. (1954). On the replication of desoxyribonucleic acid (DNA). Proceedings of the National Academy of Sciences of the United States of America, 40(9), 783–788.CrossRefGoogle Scholar
  58. Delbruck, M., & Stent, G. S. (1957). On the mechanism of DNA replication. In W. D. McElroy & B. Glass (Eds.), A symposium on the chemical basis of heredity (pp. 699–736). Baltimore: The John Hopkins Press.Google Scholar
  59. Doty, P., Marmur, J., Eigner, J., & Schildkraut, C. (1960). Strand separation and specific recombination in deoxyribonucleic acids: Physical chemical studies. Proceedings of the National Academy of Sciences of the United States of America, 46(4), 461–476.CrossRefGoogle Scholar
  60. Douglas, H., & Magnus, P. D. (2013). State of the field: Why novel prediction matters. Studies in History and Philosophy of Science Part A, 44(4), 580–589.CrossRefGoogle Scholar
  61. Dounce, A. L. (1952). Duplicating mechanism for peptide chain and nucleic acid synthesis. Enzymologia, 15(5), 251–258.Google Scholar
  62. Dounce, A. L. (1953). Nucleic acid template hypotheses. Nature, 172(4377), 541.CrossRefGoogle Scholar
  63. Duhem, P. (1962). The aim and structure of physical theory (Trans. Weiner, P. W.). New York: Atheneum.Google Scholar
  64. Earman, J., & Glymour, C. (1978). Einstein and Hilbert: Two months in the history of general relativity. Archives for History of Exact Sciences, 19(3), 291–308.CrossRefGoogle Scholar
  65. Etlinger, J. D., & Goldberg, A. L. (1977). A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proceedings of the National Academy of Sciences of the United States of America, 74(1), 54–58.CrossRefGoogle Scholar
  66. Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annual Review of Biochemistry, 78(1), 477–513.CrossRefGoogle Scholar
  67. Fisher, S. (2015). Not just “a clever way to detect whether DNA really made RNA”: The invention of DNA–RNA hybridization and its outcome. Studies in History and Philosophy of Science Part C, 53, 40–52.CrossRefGoogle Scholar
  68. Fraenkel-Conrat, H., & Williams, R. C. (1955). Reconstitution of active Tobacco Mosaic Virus from its inactive protein and nucleic acid components. Proceedings of the National Academy of Sciences of the United States of America, 41(10), 690–698.CrossRefGoogle Scholar
  69. Fruton, J. S. (1950). The role of proteolytic enzymes in the biosynthesis of peptide bonds. Yale Journal of Biology and Medicine, 22(3), 263–271.Google Scholar
  70. Fruton, J. S., Johnston, R. B., & Fried, M. (1951). Elongation of peptide chains in enzyme-catalyzed transamidation reactions. The Journal of Biological Chemistry, 190(1), 39–53.Google Scholar
  71. Fry, M. (2016a). Dissolution of hypotheses in biochemistry: Three case studies. History and Philosophy of Life Sciences, 38(4), 17.  https://doi.org/10.1007/s40656-016-0118-x.CrossRefGoogle Scholar
  72. Fry, M. (2016b). Landmark experiments in molecular biology. Amsterdam: Elsevier.Google Scholar
  73. Fuerst, C. R., & Stent, G. S. (1956). Inactivation of bacteria by decay of incorporated radioactive phosphorus. Journal of General Physiology, 40(1), 73–90.CrossRefGoogle Scholar
  74. Gamow, G. (1954a). Possible mathematical relation between deoxyribonucleic acid and proteins. Biologiske Meddelelser udviket af Det Kongelige Danske Videnskabernes Selskab, 22(3), 1–11.Google Scholar
  75. Gamow, G. (1954b). Possible relation between deoxyribonucleic acid and protein structures. Nature, 173(4398), 318.CrossRefGoogle Scholar
  76. Gamow, G., Rich, A., & Ycas, M. (1956). The problem of information transfer from the nucleic acids to proteins. Advances in Biological and Medical Physics, 4, 23–68.CrossRefGoogle Scholar
  77. Gamow, G., & Ycas, M. (1955). Statistical correlation of protein and ribonucleic acid composition. Proceedings of the National Academy of Sciences of the United States of America, 41(12), 1011–1019.CrossRefGoogle Scholar
  78. Gardner, M. R. (1982). Predicting novel facts. The British Journal for the Philosophy of Science, 33(1), 1–15.CrossRefGoogle Scholar
  79. Gianetto, R., & De Duve, C. (1955). Tissue fractionation studies. 4. Comparative study of the binding of acid phosphatase, β-glucuronidase and cathepsin by rat-liver particles. Biochemical Journal, 59(3), 433–438.CrossRefGoogle Scholar
  80. Gierer, A., & Schramm, G. (1956). Infectivity of ribonucleic acid from tobacco mosaic virus. Nature, 177(4511), 702–703.CrossRefGoogle Scholar
  81. Gros, F., Hiatt, H., Gilbert, W., Kurland, C. G., Risebrough, R. W., & Watson, J. D. (1961). Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature, 190(4776), 581–585.CrossRefGoogle Scholar
  82. Hall, B. D., & Spiegelman, S. (1961). Sequence complementarity of T2-DNA and T2-specific RNA. Proceedings of the National Academy of Sciences of the United States of America, 47(2), 137–146.CrossRefGoogle Scholar
  83. Harker, D. (2008). On the predilections for predictions. The British Journal for the Philosophy of Science, 59(3), 429–453.CrossRefGoogle Scholar
  84. Hayashi, M., & Spiegelman, S. (1961). The selective synthesis of informational RNA in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 47(10), 1564–1580.CrossRefGoogle Scholar
  85. Hempel, C. G. (1966). Philosophy of natural science. Upper Saddle River: Prentice-Hall.Google Scholar
  86. Hershey, A. D. (1953). Nucleic acid economy in bacteria infected with bacteriophage T2. The Journal of General Physiology, 37(1), 1–23.CrossRefGoogle Scholar
  87. Hershko, A. (2005). The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle[ast]. Cell Death and Differentaition, 12(9), 1191–1197.CrossRefGoogle Scholar
  88. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.CrossRefGoogle Scholar
  89. Hitchcock, C., & Sober, E. (2004). Prediction versus accommodation and the risk of overfitting. The British Journal for the Philosophy of Science, 55(1), 1–34.CrossRefGoogle Scholar
  90. Hoagland, M. (1955). An enzymic mechanism for amino acid activation in animal tissues. Biochimica et Biophysica Acta, 16(2), 288–289.CrossRefGoogle Scholar
  91. Hoagland, M. (2004). Enter transfer RNA. Nature, 431(7006), 249.CrossRefGoogle Scholar
  92. Hoagland, M., Keller, E. B., & Zamecnik, P. C. (1956). Enzymatic carboxyl activation of amino acids. The Journal of Biological Chemistry, 218(1), 345–358.Google Scholar
  93. Hoagland, M., Stephenson, M. L., Scott, J. F., Hecht, L. I., & Zamecnik, P. C. (1958). A soluble ribonucleic acid intermediate in protein synthesis. The Journal of Biological Chemistry, 231(1), 241–257.Google Scholar
  94. Hoagland, M., Zamecnik, P. C., & Stephenson, M. L. (1957). Intermediate reactions in protein biosynthesis. Biochimica et Biophysica Acta, 24(1), 215–216.Google Scholar
  95. Holmes, F. L. (2001). Meselson, Stahl and the replication of DNA: A history of “the most beautiful experiment in biology”. New Haven & London: Yale University Press.CrossRefGoogle Scholar
  96. Howson, C. (1988). Accommodation, prediction and Bayesian confirmation theory. Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1988, 381–392.CrossRefGoogle Scholar
  97. Howson, C., & Franklin, A. (1991). Maher, Mendeleev and Bayesianism. Philosophy of Science, 58(4), 574–585.CrossRefGoogle Scholar
  98. Hultin, T. (1950). Incorporation in vivo of 15N-labeled glycine into liver fractions of newly hatched chicks. Experimental Cell Research, 1(3), 376–381.CrossRefGoogle Scholar
  99. Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3(3), 318–356.CrossRefGoogle Scholar
  100. Jacob, F., & Wollman, E. L. (1956). Sur les processus de conjugaison et de recombinaison chez Escherichia coli. I. L’induction par conjugaison ou induction zygotique. Annales de l’Institut Pasteur (Paris), 91(4), 486–510.Google Scholar
  101. Jansson, L., & Tallant, J. (2017). Quantitative parsimony: Probably for the better. The British Journal for the Philosophy of Science, 68(3), 781–803.Google Scholar
  102. Judson, H. F. (1996). The eighth day of creation (Expanded ed.). New York: Cold Spring Harbor Laboratory Press.Google Scholar
  103. Kahn, J. A., Landsburg, S. E., & Stockman, A. C. (1992). On novel confirmation. The British Journal for the Philosophy of Science, 43(4), 503–516.CrossRefGoogle Scholar
  104. Kalckar, H. M. (1941). The nature of energetic coupling in biological synthesis. Chemical Reviews, 28, 71–178.CrossRefGoogle Scholar
  105. Kay, L. E. (2000). Who wrote the book of life? A history of the genetic code. Stanford, CA: Stanford University Press.Google Scholar
  106. Keller, E. G. (1951). Turnover of proteins of cell fractions of adult rat liver in vivo. Federation Proceedings, 10, 206.Google Scholar
  107. Keynes, J. M. (1921). A treatise of probability. London: Macmillan.Google Scholar
  108. Khorana, H. G. (1968). Synthetic nucleic acids and the genetic code. JAMA, the Journal of the American Medical Association, 206(9), 1978–1982.CrossRefGoogle Scholar
  109. Khorana, H. G. (Ed.). (1972). Nucleic acid synthesis in the study of the genetic code. Nobel Nobel lecture December 12, 1968. Amsterdam: Elsevier Publishing Company.Google Scholar
  110. Kurland, C. G. (1960). Molecular characterization of ribonucleic acid from Escherichia coli ribosomes: I. Isolation and molecular weights. Journal of Molecular Biology, 2(2), 83–91.CrossRefGoogle Scholar
  111. Lakatos, I. (1978). The methodology of scientific research programmes (Vol. 1). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  112. Lange, M. (2001). The apparent superiority of prediction to accommodation as a side effect: A reply to Maher. The British Journal for the Philosophy of Science, 52(3), 575–588.CrossRefGoogle Scholar
  113. Levinthal, C. (1956). The mechanism of DNA replication and genetic recombination in phage. Proceedings of the National Academy of Sciences of the United States of America, 42(7), 394–404.CrossRefGoogle Scholar
  114. Levinthal, C., & Crane, H. R. (1956). On the unwinding of DNA. Proceedings of the National Academy of Sciences of the United States of America, 42(7), 436–438.CrossRefGoogle Scholar
  115. Lipmann, F. (1941). Metabolic generation and utilization of phosphate bond energy. In F. F. Nord & J. S. Fruton (Eds.), Advances in enzymology (Vol. 1, pp. 99–162). New York: Interscience Publishers.Google Scholar
  116. Lipton, P. (2004). Inference to the best explanation (2nd ed.). London: Routledge.Google Scholar
  117. Lipton, P. (2005). Testing hypotheses: Prediction and prejudice. Science, 307(5707), 219–221.CrossRefGoogle Scholar
  118. Livesey, G., Williams, K. E., Knowles, S. E., & Ballard, F. J. (1980). Effects of weak bases on the degradation of endogenous and exogenous proteins by rat yolk sacs. Biochemical Journal, 188(3), 895–903.CrossRefGoogle Scholar
  119. Loftfield, R. B., Grover, J. W., & Stephenson, M. L. (1953). Possible role of proteolytic enzymes in protein synthesis. Nature, 171(4362), 1024–1025.CrossRefGoogle Scholar
  120. Maher, P. (1988). Prediction, accommodation, and the logic of discovery. Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1988(1), 273–285.CrossRefGoogle Scholar
  121. Maher, P. (1993). Howson and Franklin on prediction. Philosophy of Science, 60(2), 329–340.CrossRefGoogle Scholar
  122. Marmur, J., & Lane, D. (1960). Strand separation and specific recombination in deoxyribonucleic acids: Biological studies. Proceedings of the National Academy of Sciences of the United States of America, 46(4), 453–461.CrossRefGoogle Scholar
  123. McIntyre, L. (2001). Accommodation, prediction, and confirmation. Perspectives on Science, 9(3), 308–323.CrossRefGoogle Scholar
  124. Menninger, J. R. (1964). A determination of the mass per length of DNA using X-ray diffraction. Ph.D. thesis, Harvard University. http://books.google.co.il/books?id=9kg8twAACAAJ.
  125. Meselson, M., & Stahl, F. W. (1958). The replication of DNA in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 44(7), 671–682.CrossRefGoogle Scholar
  126. Mill, J. S. (1843). A system of logic, ratiocinative and inductive (8th ed., Vol. 2). New York: Harper & Brothers.Google Scholar
  127. Monod, J., Pappenheimer, A. M., Jr., & Cohen-Bazire, G. (1952). The kinetics of the biosynthesis of beta-galactosidase in Escherichia coli as a function of growth. Biochimica et Biophysica Acta, 9(6), 648–660.CrossRefGoogle Scholar
  128. Musgrave, A. (1974). Logical versus historical theories of confirmation. The British Journal for the Philosophy of Science, 25(1), 1–23.CrossRefGoogle Scholar
  129. Naono, S., & Gros, F. (1960). Synthese par E. coli d’une phosphatase modifiee en presence d’une analogue pyrimidique. Comptes Rendus de l’Académie des Sciences (Paris), 250(6), 3889–3891.Google Scholar
  130. Nirenberg, M. (1972). The genetic code. Nobel lecture. Amsterdam: Elsevier.Google Scholar
  131. Nirenberg, M., Caskey, T., Marshall, R., Brimacombe, R., Kellogg, D., Doctor, B., et al. (1966). The RNA code and protein synthesis. Cold Spring Harbor Symposia on Quantitative Biology, 31, 11–24.CrossRefGoogle Scholar
  132. Nolan, D. (1997). Quantitative parsimony. The British Journal for the Philosophy of Science, 48(3), 329–343.CrossRefGoogle Scholar
  133. Nomura, M., Hall, B. D., & Spiegelman, S. (1960). Characterization of RNA synthesized in Escherichia coli after bacteriophage T2 infection. Journal of Molecular Biology, 2(5), 306–326.CrossRefGoogle Scholar
  134. Orczy, E. (2000). The Scarlet Pimpernel [Reissue edition]. New York: Signet.Google Scholar
  135. Pardee, A. B., Jacob, F., & Monod, J. (1959). The genetic control and cytoplasmic expression of “Inducibility” in the synthesis of β-galactosidase by E. coli. Journal of Molecular Biology, 1(2), 165–178.CrossRefGoogle Scholar
  136. Poole, B., Ohkuma, S., & Warburton, M. J. (1977). The accumulation of weakly basic substances in lysosomes and the inhibition of intracellular protein degradation. Acda Biologica et Medica Germanica, 36(11–12), 1777–1788.Google Scholar
  137. Popper, K. (1963). Conjectures and refutations. New York and London: Basic Books.Google Scholar
  138. Ratner, S., Rittenberg, D., Keston, A. S., & Schoenheimer, R. (1940). Studies in protein metabolism XIV. The chemical interaction of dietary glycine and body proteins in rats. The Journal of Biological Chemistry, 134(2), 665–676.Google Scholar
  139. Rheinberger, H. J. (1993). Experiment and orientation: Early systems of in vitro protein synthesis. Journal of the History of Biology, 26(3), 443–471.CrossRefGoogle Scholar
  140. Rheinberger, H. J. (1995). From microsomes to ribosomes: “strategies” of “representation”. Journal of the History of Biology, 28(1), 49–89.CrossRefGoogle Scholar
  141. Rheinberger, H. J. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube (Vol. 32). Stanford: Stanford University Press.Google Scholar
  142. Rheinberger, H. J. (2006). A history of protein biosynthesis and ribosome research. In K. H. Nierhaus & D. Wilson (Eds.), Protein synthesis and ribosome structure: Translating the genome (pp. 1–51). Weinheim: Wiley-VCH Verlag.Google Scholar
  143. Rheinberger, H. J. (2016). A brief history of protein biosynthesis and ribosome research. Paper presented at the Lindau Nobel Laureate Meetings, Lindau, Germany. http://hdl.handle.net/11858/00-001M-0000-002B-A873-F.
  144. Rich, A. (1960). A hybrid helix containing both deoxyribose and ribose polynucleotides and its relation to the transfer of information between the nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 46(8), 1044–1053.CrossRefGoogle Scholar
  145. Rich, A., & Davies, D. R. (1956). A new two stranded helical structure: Polyadenylic acid and polyuridylic acid. Journal of the American Chemical Society, 78(14), 3548–3549.CrossRefGoogle Scholar
  146. Rich, A., & Watson, J. D. (1954a). Physical studies on ribonucleic acid. Nature, 173(4412), 995–996.CrossRefGoogle Scholar
  147. Rich, A., & Watson, J. D. (1954b). Some relations between DNA and RNA. Proceedings of the National Academy of Sciences of the United States of America, 40(8), 759–764.CrossRefGoogle Scholar
  148. Riley, M., Pardee, A. B., Jacob, F., & Monod, J. (1960). On the expression of a structural gene. Journal of Molecular Biology, 2(4), 216–225.CrossRefGoogle Scholar
  149. Rolfe, R. (1962). The molecular arrangement of the conserved subunits of DNA. Journal of Molecular Biology, 4(1), 22–30.CrossRefGoogle Scholar
  150. Scerri, E. R. (2005). Response to Barnes’s critique of Scerri and Worrall. Studies in History and Philosophy of Science Part A, 36(4), 813–816.CrossRefGoogle Scholar
  151. Scerri, E. R., & Worrall, J. (2001). Prediction and the periodic table. Studies in History and Philosophy of Science Part A, 32(3), 407–452.CrossRefGoogle Scholar
  152. Schimke, R. T., & Doyle, D. (1970). Control of enzyme levels in animal tissues. Annual Review of Biochemistry, 39(1), 929–976.CrossRefGoogle Scholar
  153. Schindler, S. (2014). Novelty, coherence, and Mendeleev’s periodic table. Studies in History and Philosophy of Science Part A, 45(Supplement C), 62–69.CrossRefGoogle Scholar
  154. Schoenheimer, R., Ratner, S., & Rittenberg, D. (1939). Studies in protein metabolism: X. The metabolic activity of body proteins investigated with l(-)-leucine containing two isotopes. The Journal of Biological Chemistry, 130(2), 703–732.Google Scholar
  155. Segal, H. L., & Doyle, D. (1978). Introduction. Protein turnover and lysosome function (pp. 1–6). New York: Academic Press.Google Scholar
  156. Segal, H. L., Winkler, J. R., & Miyagi, M. P. (1974). Relationship between degradation rates of proteins in vivo and their susceptibility to lysosomal proteases. The Journal of Biological Chemistry, 249(19), 6364–6365.Google Scholar
  157. Siekevitz, P. (1952). Uptake of radioactive alanine in vitro into the proteins of rat liver fractions. The Journal of Biological Chemistry, 195(2), 549–565.Google Scholar
  158. Siekevitz, P., & Zamecnik, P. C. (1951). In vitro incorporation of 1-C14-DL-alanine into proteins of rat liver granular fractions. Federation Proceedings, 10, 246–247.Google Scholar
  159. Smart, J. J. C. (1984). Ockham’s razor. In J. H. Fetzer (Ed.), Principles of philosophical reasoning (pp. 118–218). Totowa, NJ: Rowman & Allanheld.Google Scholar
  160. Sober, E. (2006). Parsimony. In J. Pfeifer & S. Sarkar (Eds.), The philosophy of science: An encyclopedia (Vol. 2, pp. 531–538). New York: Routledge.Google Scholar
  161. Sober, E. (2015). Ockham’s razors: A user’s manual. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  162. Spirin, A. S. (1961). The “temperature effect” and macromolecular structure of high-polymer ribonucleic acids of various origin. Biokhimiia, 26, 454–463.Google Scholar
  163. Stent, G. S., & Jerne, N. K. (1955). The distribution of parental phosphorus atoms among bacteriophage progeny. Proceedings of the National Academy of Sciences of the United States of America, 41(10), 704–709.CrossRefGoogle Scholar
  164. Taylor, J. H., Woods, P. S., & Hughes, W. L. (1957). The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proceedings of the National Academy of Sciences of the United States of America, 43(1), 122–128.CrossRefGoogle Scholar
  165. Tissieres, A., & Watson, J. D. (1958). Ribonucleoprotein particles from Escherichia coli. Nature, 182(4638), 778–780.CrossRefGoogle Scholar
  166. Ts’o, P. O. P., & Squires, R. (1959). Quatitative isolation of intact RNA from microsomal particles of pea seedlings and rabbit reticulocytes. Federation Proceedings, 18, 341.Google Scholar
  167. Tsugita, A., & Fraenkel-Conrat, H. (1960). The amino acid composition and C-terminal sequence of a chemically evoked mutant of TMV. Proceedings of the National Academy of Sciences of the United States of America, 46(5), 636–642.CrossRefGoogle Scholar
  168. Volkin, E., & Astrachan, L. (1956). Phosphorus incorporation in Escherichia coli ribo-nucleic acid after infection with bacteriophage T2. Virology, 2(2), 149–161.CrossRefGoogle Scholar
  169. Volkin, E., & Astrachan, L. (1957). RNA metabolism in T2-infected Escherichia coli. In W. D. McElroy & B. Glass (Eds.), A symposium on the chemical basis of heredity (pp. 686–695). Baltimore, MD: The Johns Hopkins Press.Google Scholar
  170. Volkin, E., Astrachan, L., & Countryman, J. L. (1958). Metabolism of RNA phosphorus in Escherichia coli infected with bacteriophage T7. Virology, 6(2), 545–555.CrossRefGoogle Scholar
  171. Watson, J. D. (1954). The structure of tobacco mosaic virus. I. X-ray evidence of a helical arrangement of sub-units around the longitudinal axis. Biochimica et Biophysica Acta, 13(1), 10–19.CrossRefGoogle Scholar
  172. Watson, J. D. (1964). The involvement of RNA in the synthesis of proteins. In Nobel Lectures (Ed.), Physiology or medicine 1942–1962 (pp. 785–808). Amsterdam: Elsevier Publishing Company.Google Scholar
  173. Watson, J. D. (2001). Genes, girls, and gamow: After the double helix. New York: Vintage Books.Google Scholar
  174. Watson, J. D. (2012). The annotated and illustrated double helix. New York: Simon & Schuster.Google Scholar
  175. Watson, J. D., & Crick, F. H. (1953a). Genetical implications of the structure of deoxyribonucleic acid. Nature, 171(4361), 964–967.CrossRefGoogle Scholar
  176. Watson, J. D., & Crick, F. H. (1953b). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738.CrossRefGoogle Scholar
  177. Weber, M. (2009). The crux of crucial experiments: Duhem’s problems and inference to the best explanation. The British Journal for the Philosophy of Science, 60(1), 19–49.CrossRefGoogle Scholar
  178. Whewell, W. (1860). On the philosophy of discovery, chapters historical and critical. London: John W. Parker and Son.Google Scholar
  179. White, R. (2003). The epistemic advantage of prediction over accommodation. Mind, 112(448), 653–683.CrossRefGoogle Scholar
  180. Wilkinson, K. D., Urban, M. K., & Haas, A. L. (1980). Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. The Journal of Biological Chemistry, 255(16), 7529–7532.Google Scholar
  181. Wittmann, H. G. (1960a). Comparison of the tryptic peptides of chemically induced and spontaneous mutants of tobacco mosaic virus. Virology, 12(4), 609–612.CrossRefGoogle Scholar
  182. Wittmann, H. G. (1960b). Comparison of the tryptic peptides of wild strains of tobacco mosaic virus. Virology, 12(4), 613–616.CrossRefGoogle Scholar
  183. Worrall, J. (2005). Prediction and the ‘periodic law’: A rejoinder to Barnes. Studies in History and Philosophy of Science Part A, 36(4), 817–826.CrossRefGoogle Scholar
  184. Worrall, J. (2014). Prediction and accommodation revisited. Studies in History and Philosophy of Science Part A, 45(Supplement C), 54–61.CrossRefGoogle Scholar
  185. Ycas, M., & Vincent, W. S. (1960). A ribonucleic acid fraction from yeast related in composition to desoxyribonucleic acid. Proceedings of the National Academy of Sciences of the United States of America, 46(6), 804–811.CrossRefGoogle Scholar
  186. Zahar, E. (1973). Why did Einstein’s programme supersede Lorentz’s? (II). The British Journal for the Philosophy of Science, 24(3), 223–262.CrossRefGoogle Scholar
  187. Zamecnik, P. C. (1979). Historical aspects of protein synthesis. Annals of the New York Academy of Sciences, 325(1), 269–302.CrossRefGoogle Scholar
  188. Zamecnik, P. C., & Keller, E. B. (1954). Relation between phosphate energy donors and incorporation of labeled amino acids into proteins. The Journal of Biological Chemistry, 209(1), 337–354.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, Rappaport Faculty of MedicineTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations