Advertisement

The sociobiology of genes: the gene’s eye view as a unifying behavioural-ecological framework for biological evolution

  • Alexis De Tiège
  • Yves Van de Peer
  • Johan Braeckman
  • Koen B. Tanghe
Original Paper
Part of the following topical collections:
  1. Darwin in the Humanities and the Social Sciences

Abstract

Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly ‘gene-centred’, the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene’s eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with (genotypically represented) fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes within the same organism and genome. Here, we explore the explanatory potential of ‘intra-organismic’ and ‘intra-genomic’ gene-selectionism, i.e., of a behavioural-ecological ‘gene’s eye view’ on genetic, genomic and organismal evolution. First, we give a general outline of the framework and how it complements the—to some extent—still ‘organism-centred’ approach of classical evolutionary theory. Secondly, we give a more in-depth assessment of its explanatory potential for biological evolution, i.e., for Darwin’s ‘common descent with modification’ or, more specifically, for ‘historical continuity or homology with modular evolutionary change’ as it has been studied by evolutionary developmental biology (evo-devo) during the last few decades. In contrast with classical evolutionary theory, evo-devo focuses on ‘within-organism’ developmental processes. Given the capacity of gene-selectionism to adopt an intra-organismal gene’s eye view, we outline the relevance of the latter model for evo-devo. Overall, we aim for the conceptual integration between the gene’s eye view on the one hand, and more organism-centred evolutionary models (both classical evolutionary theory and evo-devo) on the other.

Keywords

Classical evolutionary theory Evo-devo Organism’s versus gene’s eye view Intra-organismic and intra-genomic conflict Behavioural-ecological modelling of gene and genome evolution Evolutionarily stable strategy (ESS) Hierarchical organization 

Notes

Acknowledgements

We thank two anonymous reviewers and Staffan Müller-Wille for valuable input into this paper. Preparation of this manuscript was made possible by the Fund for Scientific Research Flanders (FWO), Belgium (Project Number: G001013N).

References

  1. Agren, J. A. (2013). Selfish genes and plant speciation. Evolutionary Biology, 40, 439–449.CrossRefGoogle Scholar
  2. Agren, J. A. (2016). Selfish genetic elements and the gene’s eye view of evolution. Current Zoology, 62, 659–665.CrossRefGoogle Scholar
  3. Alberch, P. (1982). The generative and regulatory roles of development in evolution. In D. Mossakowski & G. Roth (Eds.), Environmental adaptations and evolution (pp. 19–35). Stuttgart: Gustav Fisher.Google Scholar
  4. Alberch, P. (1991). From genes to phenotype: Dynamical systems and evolvability. Genetica, 84, 5–11.CrossRefGoogle Scholar
  5. Andersson, J. O. (2005). Lateral gene transfer in eukaryotes. CMLS Cellular and Molecular Life Sciences, 62, 1182–1197.CrossRefGoogle Scholar
  6. Avise, J. C. (2001). Evolving genomic metaphors: A new look at the language of DNA. Science, 294, 86–87.CrossRefGoogle Scholar
  7. Badyaev, A. V. (2009). Evolutionary significance of phenotypic accommodation in novel environments: An empirical test of the Baldwin effect. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 1125–1141.CrossRefGoogle Scholar
  8. Bateson, P. (2014). New thinking about biological evolution. Biological Journal of the Linnean Society, 112, 268–275.CrossRefGoogle Scholar
  9. Bohl, K., Hummert, S., Werner, S., Basanta, D., Deutsch, A., et al. (2014). Evolutionary game theory: Molecules as players. Molecular BioSystems, 10, 3066–3074.CrossRefGoogle Scholar
  10. Bourke, A. F. G. (2014). The gene’s-eye view, major transitions and the formal Darwinism project. Biology and Philosophy, 29, 241–248.CrossRefGoogle Scholar
  11. Braendle, C., & Flatt, T. (2006). A role for genetic accommodation in evolution? BioEssays, 28, 868–873.CrossRefGoogle Scholar
  12. Brigandt, I. (2007). Typology now: Homology and developmental constraints explain evolvability. Biology and Philosophy, 22, 709–725.CrossRefGoogle Scholar
  13. Brigandt, I., & Griffiths, P. E. (2007). The importance of homology for biology and philosophy. Biology and Philosophy, 22, 633–641.CrossRefGoogle Scholar
  14. Broom, M., & Rychtár, J. (2013). Game-theoretical models in biology. Boca Raton: CRC Press.Google Scholar
  15. Broom, M., & Rychtár, J. (2016). Nonlinear and multiplayer evolutionary games. In F. Thuijsman & F. Wagener (Eds.), Advances in dynamic and evolutionary games: Theory, applications, and numerical methods. Volume 14 of the series Annals of the International Society of Dynamic Games (pp. 95–115). Birkhäuser: Springer.CrossRefGoogle Scholar
  16. Burt, A., & Trivers, R. (2006). Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Belknap Harvard.CrossRefGoogle Scholar
  17. Cairns, J. (1975). The cancer problem. Scientific American, 233, 64–78.CrossRefGoogle Scholar
  18. Calcott, B., & Sterelny, K. (2011). The major transitions in evolution revisited. Cambridge: MIT Press.CrossRefGoogle Scholar
  19. Callebaut, W., Müller, G. B., & Newman, S. A. (2007). The organismic systems approach: EvoDevo and the streamlining of the naturalistic agenda. In R. Sansom & R. Brandon (Eds.), Integrating evolution and development: From theory to practice (pp. 25–92). Cambridge: MIT Press.Google Scholar
  20. Callebaut, W., & Rasskin-Gutman, D. (Eds.). (2005). Modularity: Understanding the development and evolution of natural complex systems. Cambridge: MIT Press.Google Scholar
  21. Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2005). From DNA to diversity: Molecular genetics and the evolution of animal design. Malden, MA: Blackwell Publishing.Google Scholar
  22. Clune, J., Mouret, J.-P., & Lipson, H. (2013). The evolutionary origins of modularity. Proceedings of the Royal Society B, 280, 20122863.CrossRefGoogle Scholar
  23. Cosmides, L. M., & Tooby, J. (1981). Cytoplasmic inheritance and intragenomic conflict. Journal of Theoretical Biology, 89, 83–129.CrossRefGoogle Scholar
  24. Cronin, H. (1991). The ant and the peacock: Altruism and sexual selection from Darwin to today. Cambridge: Cambridge University Press.Google Scholar
  25. Cronin, H. (2005). Adaptation: “A critique of some current evolutionary thought”. The Quarterly Review of Biology, 80, 19–26.CrossRefGoogle Scholar
  26. Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.Google Scholar
  27. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
  28. Dawkins, R. (1982). The extended phenotype. Oxford: Oxford University Press.Google Scholar
  29. Dawkins, R. (1986). The blind watchmaker. London: Longman.Google Scholar
  30. Dawkins, R. (1994). Burying the vehicle. Behavioral and Brain Sciences, 17, 616–617.CrossRefGoogle Scholar
  31. Dawkins, R. (2004). Extended phenotype—But not too extended. A reply to Laland, Turner and Jablonka. Biology and Philosophy, 19, 377–396.CrossRefGoogle Scholar
  32. De Tiège, A., Tanghe, K., Braeckman, J., & Van de Peer, Y. (2014). From DNA- to NA-centrism and the conditions for gene-centrism revisited. Biology and Philosophy, 29, 55–69.CrossRefGoogle Scholar
  33. Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia University Press.Google Scholar
  34. Dobzhansky, T. (1964). Biology, molecular and organismic. American Zoologist, 4, 443–452.CrossRefGoogle Scholar
  35. Doolittle, W. F. (1989). Hierarchical approaches to genome evolution. Canadian Journal of Philosophy, 102, 101–133.Google Scholar
  36. Doolittle, W. F. (1999). Lateral genomics. Trends in Biochemical Sciences, 24, M5–M8.CrossRefGoogle Scholar
  37. Doolittle, W. F. (2013). Is junk DNA bunk? A critique of ENCODE. Proceedings of National Academy of Sciences, 110, 5294–5300.CrossRefGoogle Scholar
  38. Doolittle, W. F., & Sapienza, C. (1980). Selfish genes, the phenotypic paradigm and genome evolution. Nature, 284, 601–603.CrossRefGoogle Scholar
  39. Eberhard, W. G. (1980). Evolutionary consequences of intracellular organelle competition. The Quarterly Review of Biology, 55, 231–249.CrossRefGoogle Scholar
  40. Edwards, A. W. F. (2014). R.A. Fisher’s gene-centred view of evolution and the fundamental theorem of natural selection. Biological Reviews, 89, 135–147.CrossRefGoogle Scholar
  41. Fedoroff, N. V. (2012). Transposable elements, epigenetics, and genome evolution. Science, 338, 758–767.CrossRefGoogle Scholar
  42. Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.CrossRefGoogle Scholar
  43. Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
  44. Gardner, A., & Grafen, A. (2009). Capturing the superorganism: A formal theory of group adaptation. Journal of Evolutionary Biology, 22, 659–671.CrossRefGoogle Scholar
  45. Gardner, A., & Welch, J. J. (2011). A formal theory of the selfish gene. Journal of Evolutionary Biology, 24, 1801–1813.CrossRefGoogle Scholar
  46. Gilbert, S. F., Opitz, J. M., & Raff, R. A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173, 357–372.CrossRefGoogle Scholar
  47. Gilbert, S. F., & Sarkar, S. (2000). Embracing complexity: Organicism for the 21st century. Developmental Dynamics, 219, 1–9.CrossRefGoogle Scholar
  48. Godfrey-Smith, P. (2009). Darwinian populations and natural selection. NY: Oxford University Press.CrossRefGoogle Scholar
  49. Gogarten, J. P., & Townsend, J. P. (2005). Horizontal gene transfer, genome innovation and evolution. Nature Reviews Microbiology, 3, 679–687.CrossRefGoogle Scholar
  50. Gokhale, C. S., & Traulsen, A. (2014). Evolutionary multiplayer games. Dynamic Games and Applications, 4, 468–488.CrossRefGoogle Scholar
  51. Goldenfeld, N., & Woese, C. (2011). Life is physics: Evolution as a collective phenomenon far from equilibrium. Annual Review of Condensed Matter Physics, 2, 375–399.CrossRefGoogle Scholar
  52. Goodwin, B. C. (1982). Development and evolution. Journal of Theoretical Biology, 97, 43–55.CrossRefGoogle Scholar
  53. Goodwin, B. C. (1994). How the leopard changed its spots: The evolution of complexity. London: Weidenfeld and Nicolson.Google Scholar
  54. Goodwin, B. C., Kauffman, S., & Murray, J. D. (1993). Is morphogenesis an intrinsically robust process? Journal of Theoretical Biology, 163, 135–144.CrossRefGoogle Scholar
  55. Gould, S. J. (1983). What happens to bodies if genes act for themselves? In S. J. Gould (Ed.), Hen’s teeth and horse’s toes (pp. 166–176). New York: Norton.Google Scholar
  56. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
  57. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B: Biological Sciences, 205, 581–598.CrossRefGoogle Scholar
  58. Goymer, P. (2008). Natural selection: The evolution of cancer. Nature, 454, 1046–1048.CrossRefGoogle Scholar
  59. Gregory, T. R. (2004). Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology, 30, 179–202.CrossRefGoogle Scholar
  60. Gregory, T. R., Elliott, T. A., & Linquist, S. (2016). Why genomics needs multilevel evolutionary theory. In N. Eldredge, T. Pievani, E. Serrelli, & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 137–150). Chicago: University of Chicago Press.Google Scholar
  61. Griffiths, P. E. (2002). Lost: One gene concept, reward to finder. Biology and Philosophy, 17, 271–283.CrossRefGoogle Scholar
  62. Griffiths, P., & Stotz, K. (2013). Genetics and philosophy: An introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  63. Haig, D. (1997). The social gene. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology: An evolutionary approach (pp. 284–304). Oxford: Blackwell Publisher.Google Scholar
  64. Haig, D. (2006). Intragenomic politics. Cytogenetic and Genome Research, 113, 68–74.CrossRefGoogle Scholar
  65. Haig, D. (2007). Weismann rules! OK? Epigenetics and the Lamarckian temptation. Biology and Philosophy, 22, 415–428.CrossRefGoogle Scholar
  66. Haig, D. (2012). The strategic gene. Biology and Philosophy, 27, 461–479.CrossRefGoogle Scholar
  67. Haig, D. (2014). Genetic dissent and individual compromise. Biology and Philosophy, 29, 233–239.CrossRefGoogle Scholar
  68. Haldane, J. B. S. (1932). The causes of evolution. Princeton: Princeton University Press.Google Scholar
  69. Hall, B. K. (Ed.). (1994). Homology: The hierarchical basis of comparative biology. San Diego: Academic Press.Google Scholar
  70. Hall, B. K. (1998). Evolutionary developmental biology (2nd ed.). Dordrecht: Kluwer.Google Scholar
  71. Hamilton, W. D. (1963). The evolution of altruistic behavior. American Naturalist, 97, 354–356.CrossRefGoogle Scholar
  72. Hamilton, W. D. (1964). The genetical evolution of social behaviour. Journal of Theoretical Biology, 7, 1–52.CrossRefGoogle Scholar
  73. Higgs, P. G., & Lehman, N. (2014). The RNA world: Molecular cooperation at the origins of life. Nature Reviews Genetics, 16, 7–17.CrossRefGoogle Scholar
  74. Hull, D. L. (1980). Individuality and selection. Annual Reviews of Ecology and Systematics, 11, 311–332.CrossRefGoogle Scholar
  75. Hurst, G. D. D., & Werren, J. H. (2001). The role of selfish genetic elements in eukaryotic evolution. Nature Reviews Genetics, 2, 597–606.CrossRefGoogle Scholar
  76. Huxley, J. S. (1942). Evolution: The modern synthesis. London: Allen and Unwin.Google Scholar
  77. Jablonka, E., & Lamb, M. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: MIT Press.Google Scholar
  78. Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84, 131–176.CrossRefGoogle Scholar
  79. Jo, B.-S., & Choi, S. S. (2015). Introns: The functional benefits of introns in genomes. Genomics Informatics, 13, 112–118.CrossRefGoogle Scholar
  80. Jurka, J., Bao, W., & Kojima, K. K. (2011). Families of transposable elements, population structure and the origin of species. Biology Direct, 6, 44.CrossRefGoogle Scholar
  81. Kauffman, S. A. (1983). Developmental constraints: Internal factors in evolution. In B. C. Goodwin, N. Holder, & C. C. Wylie (Eds.), Development and evolution (pp. 195–225). Cambridge: Cambridge University Press.Google Scholar
  82. Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford: Oxford University Press.Google Scholar
  83. Keeling, P. J., & Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics, 9, 605–618.CrossRefGoogle Scholar
  84. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  85. Kirschner, M., & Gerhart, J. (1998). Evolvability. PNAS, 95, 8420–8427.CrossRefGoogle Scholar
  86. Koonin, E. V. (2016). Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society B, 371, 20150442.CrossRefGoogle Scholar
  87. Koonin, E. V., Senkevich, T. G., & Dolja, V. V. (2006). The ancient virus world and evolution of cells. Biology Direct, 1, 29.CrossRefGoogle Scholar
  88. Laland, K., Uller, T., Feldman, M., et al. (2014). Does evolutionary theory need a rethink? Nature, 514, 161–164.CrossRefGoogle Scholar
  89. Leigh, E. G. (1971). Adaptation and diversity: Natural history and the mathematics of evolution. San Francisco: Freeman.Google Scholar
  90. Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18.CrossRefGoogle Scholar
  91. Lisch, D. (2013). How important are transposons for plant evolution? Nature Reviews Genetics, 14, 49–61.CrossRefGoogle Scholar
  92. Lynch, M. (2002). Intron evolution as a population-genetic process. PNAS USA, 99, 6118–6123.CrossRefGoogle Scholar
  93. Lynch, M. (2007a). The origins of genome architecture. Sunderland (MA): Sinauer Associates.Google Scholar
  94. Lynch, M. (2007b). The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS, 104, 8597–8604.CrossRefGoogle Scholar
  95. Maynard Smith, J. M. (1976). Evolution and the theory of games. American Scientist, 64, 41–45.Google Scholar
  96. Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  97. Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraints and evolution. The Quarterly Review of Biology, 60, 265–287.CrossRefGoogle Scholar
  98. Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: Oxford University Press.Google Scholar
  99. Mayr, E., & Provine, W. B. (Eds.). (1980). The evolutionary synthesis: Perspectives on the unification of biology. London, MA: Harvard University Press.Google Scholar
  100. Merlo, L. M. F., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6, 924–935.CrossRefGoogle Scholar
  101. Michod, R. E. (1999). Darwinian dynamics: Evolutionary Transitions in fitness and individuality. Princeton: Princeton University Press.Google Scholar
  102. Moczek, A. P., Sultan, S., Foster, S., Ledón-Rettig, C., Dworkin, I., Nijhout, H. F., et al. (2011). The role of developmental plasticity in evolutionary innovation. Proceedings of the Royal Society of London B: Biological Sciences, 278, 2705–2713.CrossRefGoogle Scholar
  103. Newman, S. A., Forgacs, G., & Müller, G. B. (2006). Before programs: The physical origination of multicellular forms. International Journal of Developmental Biology, 50, 289–299.CrossRefGoogle Scholar
  104. Newman, S. A., & Müller, G. B. (2010). Morphological evolution: Epigenetic mechanisms. In J. Wiley (Ed.), Encyclopedia of life sciences (ELS). Chichester. New York: Wiley.  https://doi.org/10.1002/9780470015902.a0002100.pub2.
  105. Noble, D., Jablonka, E., Joyner, M. J., Müller, G. B., & Omholt, S. W. (2014). Evolution evolves: Physiology returns to centre stage. The Journal of Physiology, 592, 2237–2244.CrossRefGoogle Scholar
  106. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194, 23–28.CrossRefGoogle Scholar
  107. Okasha, S. (2006). Evolution and the levels of selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
  108. Okasha, S. (2008). Fisher’s fundamental theorem of natural selection: A philosophical analysis. The British Journal for the Philosophy of Science, 59, 319–351.CrossRefGoogle Scholar
  109. Okasha, S. (2012). Social justice, genomic justice and the veil of ignorance: Harsanyi meets Mendel. Economics and Philosophy, 28, 43–71.CrossRefGoogle Scholar
  110. Orgel, L. E., & Crick, F. H. C. (1980). Selfish DNA: The ultimate parasite. Nature, 284, 604–607.CrossRefGoogle Scholar
  111. Orr, H. A. (1996). Dobzhansky, Bateson, and the genetics of speciation. Genetics, 144, 1331–1335.Google Scholar
  112. Oyama, S., Griffiths, P. E., & Gray, R. D. (Eds.). (2001). Cycles of contingency: Developmental systems and evolution. Cambridge, MA: MIT Press.Google Scholar
  113. Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics, 9, 75–82.CrossRefGoogle Scholar
  114. Pigliucci, M., & Müller, G. B. (2010). Evolution—The extended synthesis. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  115. Pigliucci, M., Murren, C. J., & Schlichting, C. D. (2006). Review: Phenotypic plasticity and evolution by genetic assimilation. The Journal of Experimental Biology, 209, 2362–2367.CrossRefGoogle Scholar
  116. Queller, D. C. (1997). Cooperators since life began. The Quarterly Review of Biology, 72, 184–188.CrossRefGoogle Scholar
  117. Queller, D. C. (2011). A gene’s eye view of Darwinian populations: Review of Peter Godfrey-Smith’s Darwinian populations and natural selection. Biology and Philosophy, 26, 905–913.CrossRefGoogle Scholar
  118. Queller, D. C., & Strassmann, J. E. (2009). Beyond society: The evolution of organismality. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3143–3155.CrossRefGoogle Scholar
  119. Rice, W. R. (2013). Nothing in genetics makes sense except in the light of genomic conflict. Annual Review of Ecology Evolution and Systematics, 44, 217–237.CrossRefGoogle Scholar
  120. Sapp, J. (2009). The new foundations of evolution: On the tree of life. New York: Oxford University Press.Google Scholar
  121. Schlosser, G., & Wagner, G. P. (2004). Modularity in development and evolution. Chicago: The University of Chicago Press.Google Scholar
  122. Sterelny, K., & Kitcher, P. (1988). The return of the gene. The Journal of Philosophy, 85, 339–360.CrossRefGoogle Scholar
  123. Strassmann, J. E., & Queller, D. C. (2010). The social organism: Congresses, parties, and committees. Evolution, 64, 605–616.CrossRefGoogle Scholar
  124. Tanghe, K. B. (2015). Mendel at the sesquicentennial of ‘Versuche über Pflanzen-Hybriden’ (1865): The root of the biggest legend in the history of science. Endeavour, 39, 106–115.CrossRefGoogle Scholar
  125. Vrba, E. S., & Eldredge, N. (1984). Individuals, hierarchies and processes: Towards a more complete evolutionary theory. Paleobiology, 10, 146–171.CrossRefGoogle Scholar
  126. Waddington, C. H. (1957). The strategy of the genes. New York: Macmillan.Google Scholar
  127. Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8, 473–479.CrossRefGoogle Scholar
  128. Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton: Princeton University Press.CrossRefGoogle Scholar
  129. Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.CrossRefGoogle Scholar
  130. Weismann, A. (1904). The evolution theory. London: Edward Arnold.CrossRefGoogle Scholar
  131. Werren, J. H. (2011). Selfish genetic elements, genetic conflict, and evolutionary innovation. PNAS, 108, 10863–10870.CrossRefGoogle Scholar
  132. Werren, J. H., Nur, U., & Wu, C.-I. (1988). Selfish genetic elements. Trends in Ecology and Evolution, 3, 297–302.CrossRefGoogle Scholar
  133. West, S. A., Fisher, R. M., Gardner, A., & Kiers, E. T. (2015). Major evolutionary transitions in individuality. PNAS, 112, 10112–10119.CrossRefGoogle Scholar
  134. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.Google Scholar
  135. Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton: Princeton University Press.Google Scholar
  136. Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Philosophy and Moral ScienceGhent UniversityGhentBelgium
  2. 2.Department of Plant Biotechnology and BioinformaticsVIB & Ghent UniversityGhentBelgium

Personalised recommendations