Advertisement

Current Climate Change Reports

, Volume 4, Issue 2, pp 84–98 | Cite as

The Present and Future of Secondary Organic Aerosol Direct Forcing on Climate

  • Kostas Tsigaridis
  • Maria Kanakidou
Aerosols and Climate (O Boucher and S Remy, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Aerosols and Climate

Abstract

Secondary organic aerosols (SOA), a subset of organic aerosols that are chemically produced in the atmosphere, are included in climate modeling calculations using very simple parameterizations. Estimates on their shortwave forcing on climate span almost two orders of magnitude, being potentially comparable to sulfate direct forcing. In the longwave, a neglected part of the spectrum when it comes to SOA, the direct SOA forcing could exceed that of sulfate and black carbon, although in absolute values, it is much weaker than the shortwave forcing. Critical for these estimates is the vertical distribution of the climate active agents, pointing to SOA temperature-dependent volatility. Over the last few years, research also revealed the highly oxidized character of organic aerosol and its chemical aging in the atmosphere that partially leads to the formation of brown carbon, an absorbing form of organic aerosol. This review summarizes critical advances in the understanding of SOA behavior and properties relevant to direct climate forcing and puts them in perspective with regard to primary organic aerosol and brown carbon. These findings also demonstrate an emerging dynamic picture of organic aerosol that has not yet been integrated in climate modeling. The challenges for the coming years in order to reduce uncertainties in the direct organic aerosol climate impact are discussed. High priority for future model development should be given to the dynamic link between “white” and “brown” organic aerosol and between primary and secondary organic aerosol. The SOA temperature-dependent volatility parameterizations and wavelength-dependent refractive index should be also included.

Keywords

Secondary organic aerosols Aerosol radiative forcing Brown carbon Aerosol direct effect Aerosol aging 

Notes

Acknowledgments

Climate modeling at Goddard Institute for Space Studies (GISS) is supported by the National Aeronautics and Space Administration (NASA) Modeling, Analysis, and Prediction (MAP) program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center (GSFC). KT acknowledges support from NASA MAP, contract NNX09AK32G, and Atmospheric Composition Modeling and Analysis Program (ACMAP), contract NNX15AE36G. MK acknowledges support by the European FP7 collaborative project BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding), European Commission Framework Program 7, FP7-ENV-2013, grant agreement number 603445.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Odum JR, Hoffmann T, Bowman F, Collins D, Flagan RC, Seinfeld JH. Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Technol. 1996;30(8):2580–5.  https://doi.org/10.1021/es950943+.Google Scholar
  2. 2.
    Odum JR, Jungkamp TPW, Griffin RJ, Flagan RC, Seinfeld JH. The atmospheric aerosol-forming potential of whole gasoline vapor. Science. 1997;276(5309):96–9.  https://doi.org/10.1126/science.276.5309.96.Google Scholar
  3. 3.
    Hoffmann T, Odum JR, Bowman F, Collins D, Klockow D, Flagan RC, et al. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem. 1997;26(2):189–222.  https://doi.org/10.1023/A:1005734301837.Google Scholar
  4. 4.
    Griffin RJ, Cocker DR, Seinfeld JH, Dabdub D. Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophys Res Lett. 1999;26(17):2721–4.  https://doi.org/10.1029/1999gl900476.Google Scholar
  5. 5.
    Pandis SN, Paulson SE, Seinfeld JH, Flagan RC. Aerosol formation in the photooxidation of isoprene and β-pinene. Atmos Environ Part A. 1991;25(5):997–1008.  https://doi.org/10.1016/0960-1686(91)90141-S.Google Scholar
  6. 6.
    Kroll JH, Ng NL, Murphy SM, Flagan RC, Seinfeld JH. Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophysical Research Letters. 2005;32(18). doi: https://doi.org/10.1029/2005gl023637.
  7. 7.
    Kroll JH, Ng NL, Murphy SM, Flagan RC, Seinfeld JH. Secondary organic aerosol formation from isoprene photooxidation. Environ Sci Technol. 2006;40(6):1869–77.  https://doi.org/10.1021/es0524301.Google Scholar
  8. 8.
    Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev. 2012;5(6):1471–92.  https://doi.org/10.5194/gmd-5-1471-2012.Google Scholar
  9. 9.
    Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, et al. Organic aerosol and global climate modelling: a review. Atmos Chem Phys. 2005;5:1053–123.  https://doi.org/10.5194/acp-5-1053-2005.Google Scholar
  10. 10.
    Pankow JF. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos Environ. 1994;28(2):185–8.  https://doi.org/10.1016/1352-2310(94)90093-0.Google Scholar
  11. 11.
    Pankow JF. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ. 1994;28(2):189–93.  https://doi.org/10.1016/1352-2310(94)90094-9.Google Scholar
  12. 12.
    Kanakidou M, Tsigaridis K, Dentener FJ, Crutzen PJ. Human-activity-enhanced formation of organic aerosols by biogenic hydrocarbon oxidation. J Geophys Res-Atmos. 2000;105(D7):9243–54.  https://doi.org/10.1029/1999JD901148.Google Scholar
  13. 13.
    Chung SH, Seinfeld JH. Global distribution and climate forcing of carbonaceous aerosols. J Geophys Res: Atmos. 2002;107(D19):4407.  https://doi.org/10.1029/2001JD001397.Google Scholar
  14. 14.
    Tsigaridis K, Kanakidou M. Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis. Atmos Chem Phys. 2003;3:1849–69.  https://doi.org/10.5194/acp-3-1849-2003.Google Scholar
  15. 15.
    Tsigaridis K, Krol M, Dentener FJ, Balkanski Y, Lathiere J, Metzger S, et al. Change in global aerosol composition since preindustrial times. Atmos Chem Phys. 2006;6:5143–62.  https://doi.org/10.5194/acp-6-5143-2006.Google Scholar
  16. 16.
    Tsigaridis K, Kanakidou M. Secondary organic aerosol importance in the future atmosphere. Atmos Environ. 2007;41(22):4682–92.  https://doi.org/10.1016/j.atmosenv.2007.03.045.Google Scholar
  17. 17.
    Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys. 2006;6(12):4321–44.  https://doi.org/10.5194/acp-6-4321-2006.Google Scholar
  18. 18.
    Tsigaridis K, Daskalakis N, Kanakidou M, Adams PJ, Artaxo P, Bahadur R, et al. The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos Chem Phys. 2014;14(19):10845–95.  https://doi.org/10.5194/acp-14-10845-2014.Google Scholar
  19. 19.
    Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett. 2007;34(13):6.  https://doi.org/10.1029/2007gl029979.Google Scholar
  20. 20.
    Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, et al. Evolution of organic aerosols in the atmosphere. Science. 2009;326(5959):1525–9.  https://doi.org/10.1126/science.1180353.Google Scholar
  21. 21.
    Shrivastava M, Cappa CD, Fan J, Goldstein AH, Guenther AB, Jimenez JL, et al. Recent advances in understanding secondary organic aerosol: implications for global climate forcing. Rev Geophys. 2017;55(2):509–59.  https://doi.org/10.1002/2016RG000540.Google Scholar
  22. 22.
    Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D et al. Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophysical Research Letters. 2006;33(17). doi: https://doi.org/10.1029/2006gl026899.
  23. 23.
    Hodzic A, Jimenez JL, Madronich S, Canagaratna MR, DeCarlo PF, Kleinman L, et al. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. Atmos Chem Phys. 2010;10(12):5491–514.  https://doi.org/10.5194/acp-10-5491-2010.Google Scholar
  24. 24.
    Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys. 2009;9(14):5155–236.  https://doi.org/10.5194/acp-9-5155-2009.Google Scholar
  25. 25.
    Hodzic A, Kasibhatla PS, Jo DS, Cappa CD, Jimenez JL, Madronich S, et al. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmos Chem Phys. 2016;16(12):7917–41.  https://doi.org/10.5194/acp-16-7917-2016.Google Scholar
  26. 26.
    Spracklen DV, Jimenez JL, Carslaw KS, Worsnop DR, Evans MJ, Mann GW, et al. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos Chem Phys. 2011;11(23):12109–36.  https://doi.org/10.5194/acp-11-12109-2011.Google Scholar
  27. 27.
    Shrivastava M, Easter RC, Liu X, Zelenyuk A, Singh B, Zhang K, et al. Global transformation and fate of SOA: implications of low-volatility SOA and gas-phase fragmentation reactions. J Geophys Res: Atmos. 2015;120(9):4169–95.  https://doi.org/10.1002/2014JD022563.Google Scholar
  28. 28.
    Heald CL, Coe H, Jimenez JL, Weber RJ, Bahreini R, Middlebrook AM, et al. Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmos Chem Phys. 2011;11(24):12673–96.  https://doi.org/10.5194/acp-11-12673-2011.Google Scholar
  29. 29.
    Heald CL, Ridley DA, Kreidenweis SM, Drury EE. Satellite observations cap the atmospheric organic aerosol budget. Geophys Res Lett. 2010;37  https://doi.org/10.1029/2010gl045095.
  30. 30.
    Goldstein AH, Galbally IE. Known and unexplored organic constituents in the earth’s atmosphere. Environ Sci Technol. 2007;41(5):1514–21.  https://doi.org/10.1021/es072476p.Google Scholar
  31. 31.
    Myriokefalitakis S, Tsigaridis K, Mihalopoulos N, Sciare J, Nenes A, Kawamura K, et al. In-cloud oxalate formation in the global troposphere: a 3-D modeling study. Atmos Chem Phys. 2011;11(12):5761–82.  https://doi.org/10.5194/acp-11-5761-2011.Google Scholar
  32. 32.
    Marais EA, Jacob DJ, Jimenez JL, Campuzano-Jost P, Day DA, Hu W, et al. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the Southeast United States and co-benefit of SO2 emission controls. Atmos Chem Phys. 2016;16(3):1603–18.  https://doi.org/10.5194/acp-16-1603-2016.Google Scholar
  33. 33.
    Stadtler S, Kühn T, Schröder S, Taraborrelli D, Schultz MG, Kokkola H. Isoprene derived secondary organic aerosol in a global aerosol chemistry climate model. Geosci Model Dev Discuss. 2017;2017:1–35.  https://doi.org/10.5194/gmd-2017-244.Google Scholar
  34. 34.
    Gordon H, Kirkby J, Baltensperger U, Bianchi F, Breitenlechner M, Curtius J, et al. Causes and importance of new particle formation in the present-day and preindustrial atmospheres. J Geophys Res: Atmos. 2017;122(16):8739–60.  https://doi.org/10.1002/2017jd026844.Google Scholar
  35. 35.
    Hodzic A, Jimenez JL. Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models. Geosci Model Dev. 2011;4(4):901–17.  https://doi.org/10.5194/gmd-4-901-2011.Google Scholar
  36. 36.
    Cubison MJ, Ortega AM, Hayes PL, Farmer DK, Day D, Lechner MJ, et al. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmos Chem Phys. 2011;11(23):12049–64.  https://doi.org/10.5194/acp-11-12049-2011.Google Scholar
  37. 37.
    Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst. 2014;6(1):141–84.  https://doi.org/10.1002/2013MS000265.Google Scholar
  38. 38.
    Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc. 2012;93(4):485–98.  https://doi.org/10.1175/bams-d-11-00094.1.Google Scholar
  39. 39.
    IPCC. Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, and New York, NY: Cambridge University Press; 2013.Google Scholar
  40. 40.
    Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O. Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res-Atmos. 2011;116  https://doi.org/10.1029/2011jd016074.
  41. 41.
    Derwent RG, Jenkin ME, Johnson CE, Stevenson DS. The global distribution of secondary particulate matter in a 3-D Lagrangian chemistry transport model. J Atmos Chem. 2003;44(1):57–95.  https://doi.org/10.1023/A:1022139814102.Google Scholar
  42. 42.
    Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, et al. Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys. 2012;12(14):6377–404.  https://doi.org/10.5194/acp-12-6377-2012.Google Scholar
  43. 43.
    Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, et al. A global model of natural volatile organic compound emissions. J Geophys Res-Atmos. 1995;100(D5):8873–92.  https://doi.org/10.1029/94jd02950.Google Scholar
  44. 44.
    Takemura T, Okamoto H, Maruyama Y, Numaguti A, Higurashi A, Nakajima T. Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J Geophys Res-Atmos. 2000;105(D14):17853–73.  https://doi.org/10.1029/2000JD900265.Google Scholar
  45. 45.
    Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev. 2011;4(4):845–72.  https://doi.org/10.5194/gmd-4-845-2011.Google Scholar
  46. 46.
    Szopa S, Balkanski Y, Schulz M, Bekki S, Cugnet D, Fortems-Cheiney A, et al. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Clim Dyn. 2013;40(9–10):2223–50.  https://doi.org/10.1007/s00382-012-1408-y.Google Scholar
  47. 47.
    Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, et al. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim. 2011;24(13):3484–519.  https://doi.org/10.1175/2011jcli3955.1.Google Scholar
  48. 48.
    Tie X, Madronich S, Walters S, Edwards DP, Ginoux P, Mahowald N et al. Assessment of the global impact of aerosols on tropospheric oxidants. Journal of Geophysical Research: Atmospheres. 2005;110(D3).  https://doi.org/10.1029/2004JD005359.
  49. 49.
    Miller RL, Schmidt GA, Nazarenko LS, Tausnev N, Bauer SE, DelGenio AD, et al. CMIP5 historical simulations (1850–2012) with GISS ModelE2. J Adv Model Earth Syst. 2014;  https://doi.org/10.1002/2013MS000266.
  50. 50.
    Nazarenko L, Schmidt GA, Miller RL, Tausnev N, Kelley M, Ruedy R, et al. Future climate change under RCP emission scenarios with GISS ModelE2. J Adv Model Earth Syst. 2015;7(1):244–67.  https://doi.org/10.1002/2014MS000403.Google Scholar
  51. 51.
    O'Donnell D, Tsigaridis K, Feichter J. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmos Chem Phys. 2011;11(16):8635–59.  https://doi.org/10.5194/acp-11-8635-2011.Google Scholar
  52. 52.
    Lathière J, Hauglustaine DA, Friend AD, De Noblet-Ducoudre N, Viovy N, Folberth GA. Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos Chem Phys. 2006;6:2129–46.  https://doi.org/10.5194/acp-6-2129-2006.Google Scholar
  53. 53.
    Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, et al. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys. 2010;10(15):7017–39.  https://doi.org/10.5194/acp-10-7017-2010.Google Scholar
  54. 54.
    Jokinen T, Berndt T, Makkonen R, Kerminen V-M, Junninen H, Paasonen P, et al. Production of extremely low volatile organic compounds from biogenic emissions: measured yields and atmospheric implications. Proc Natl Acad Sci. 2015;112(23):7123–8.  https://doi.org/10.1073/pnas.1423977112.Google Scholar
  55. 55.
    Lopez-Hilfiker FD, Mohr C, Ehn M, Rubach F, Kleist E, Wildt J, et al. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. Atmos Chem Phys. 2015;15(14):7765–76.  https://doi.org/10.5194/acp-15-7765-2015.Google Scholar
  56. 56.
    Stark H, Yatavelli RLN, Thompson SL, Kang H, Krechmer JE, Kimmel JR, et al. Impact of thermal decomposition on thermal desorption instruments: advantage of thermogram analysis for quantifying volatility distributions of organic species. Environ Sci Technol. 2017;51(15):8491–500.  https://doi.org/10.1021/acs.est.7b00160.Google Scholar
  57. 57.
    Hand JL, Malm WC. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. Journal of Geophysical Research: Atmospheres. 2007;112(D16).  https://doi.org/10.1029/2007JD008484.
  58. 58.
    Seinfeld JH, Pandis SN. Atmospheric chemistry and physics—from air pollution to climate change. 2nd ed. New York: John Wiley & Sons; 2006.Google Scholar
  59. 59.
    Wu Y, Cheng T, Zheng L, Chen H. Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols. J Quant Spectrosc Radiat Transf. 2017;195:147–55.  https://doi.org/10.1016/j.jqsrt.2017.01.013.Google Scholar
  60. 60.
    Lack DA, Langridge JM, Bahreini R, Cappa CD, Middlebrook AM, Schwarz JP. Brown carbon and internal mixing in biomass burning particles. Proc Natl Acad Sci U S A. 2012;109(37):14802–7.  https://doi.org/10.1073/pnas.1206575109.Google Scholar
  61. 61.
    Chuang CC, Penner JE, Prospero JM, Grant KE, Rau GH, Kawamoto K. Cloud susceptibility and the first aerosol indirect forcing: sensitivity to black carbon and aerosol concentrations. Journal of Geophysical Research: Atmospheres. 2002;107(D21):AAC 10–1-AAC -23.  https://doi.org/10.1029/2000JD000215.
  62. 62.
    Makkonen R, Asmi A, Kerminen VM, Boy M, Arneth A, Guenther A, et al. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2. Atmos Chem Phys. 2012;12(21):10077–96.  https://doi.org/10.5194/acp-12-10077-2012.Google Scholar
  63. 63.
    Scott CE, Rap A, Spracklen DV, Forster PM, Carslaw KS, Mann GW, et al. The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmos Chem Phys. 2014;14(1):447–70.  https://doi.org/10.5194/acp-14-447-2014.Google Scholar
  64. 64.
    D'Andrea SD, Acosta Navarro JC, Farina SC, Scott CE, Rap A, Farmer DK, et al. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation. Atmos Chem Phys. 2015;15(5):2247–68.  https://doi.org/10.5194/acp-15-2247-2015.Google Scholar
  65. 65.
    Kim H, Barkey B, Paulson SE. Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation. Journal of Geophysical Research: Atmospheres. 2010;115(D24).  https://doi.org/10.1029/2010JD014549.
  66. 66.
    Cappa CD, Che DL, Kessler SH, Kroll JH, Wilson KR. Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. Journal of Geophysical Research: Atmospheres. 2011;116(D15).  https://doi.org/10.1029/2011JD015918.
  67. 67.
    Harvey RM, Bateman AP, Jain S, Li YJ, Martin S, Petrucci GA. Optical properties of secondary organic aerosol from cis-3-hexenol and cis-3-hexenyl acetate: effect of chemical composition, humidity, and phase. Environ Sci Technol. 2016;50(10):4997–5006.  https://doi.org/10.1021/acs.est.6b00625.Google Scholar
  68. 68.
    Li K, Wang W, Ge M, Li J, Wang D. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons 2014;4:4922.  https://doi.org/10.1038/srep04922.
  69. 69.
    Seland Ø, Iversen T, Kirkevåg A, Storelvmo T. Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus Ser A-Dyn Meteorol Oceanogr. 2008;60(3):459–91.  https://doi.org/10.1111/j.1600-0870.2008.00318.x.Google Scholar
  70. 70.
    Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: the software package OPAC. Bull Am Meteorol Soc. 1998;79(5):831–44.  https://doi.org/10.1175/1520-0477(1998)079<0831:opoaac>2.0.co;2.Google Scholar
  71. 71.
    Ma X, Yu F, Luo G. Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties. Atmos Chem Phys. 2012;12(12):5563–81.  https://doi.org/10.5194/acp-12-5563-2012.Google Scholar
  72. 72.
    Aouizerats B, Thouron O, Tulet P, Mallet M, Gomes L, Henzing JS. Development of an online radiative module for the computation of aerosol optical properties in 3-D atmospheric models: validation during the EUCAARI campaign. Geosci Model Dev. 2010;3(2):553–64.  https://doi.org/10.5194/gmd-3-553-2010.Google Scholar
  73. 73.
    Chin M, Diehl T, Dubovik O, Eck TF, Holben BN, Sinyuk A, et al. Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements. Ann Geophys. 2009;27(9):3439–64.  https://doi.org/10.5194/angeo-27-3439-2009.Google Scholar
  74. 74.
    Stier P, Seinfeld JH, Kinne S, Boucher O. Aerosol absorption and radiative forcing. Atmos Chem Phys. 2007;7(19):5237–61.  https://doi.org/10.5194/acp-7-5237-2007.Google Scholar
  75. 75.
    Schulz M, Chin M, Kinne S. The aerosol model comparison project, AeroCom, phase II: clearing up diversity. IGAC newsletter. 2009; No. 41:2–11.Google Scholar
  76. 76.
    Yin CQ, Wang TJ, Solmon F, Mallet M, Jiang F, Li S, et al. Assessment of direct radiative forcing due to secondary organic aerosol over China with a regional climate model. Tellus Ser B-Chem Phys Meteorol. 2015;67  https://doi.org/10.3402/tellusb.v67.24634.
  77. 77.
    Denjean C, Formenti P, Picquet-Varrault B, Camredon M, Pangui E, Zapf P, et al. Aging of secondary organic aerosol generated from the ozonolysis of alpha-pinene: effects of ozone, light and temperature. Atmos Chem Phys. 2015;15(2):883–97.  https://doi.org/10.5194/acp-15-883-2015.Google Scholar
  78. 78.
    Kim H, Paulson SE. Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, alpha-pinene and toluene. Atmos Chem Phys. 2013;13(15):7711–23.  https://doi.org/10.5194/acp-13-7711-2013.Google Scholar
  79. 79.
    Sorooshian A, Shingler T, Crosbie E, Barth MC, Homeyer CR, Campuzano-Jost P, et al. Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: analysis of airborne data from DC3. J Geophys Res-Atmos. 2017;122(8):4565–77.  https://doi.org/10.1002/2017jd026638.Google Scholar
  80. 80.
    Yu Y, Ezell MJ, Zelenyuk A, Imre D, Alexander L, Ortega J, et al. Photooxidation of α-pinene at high relative humidity in the presence of increasing concentrations of NOx. Atmos Environ. 2008;42(20):5044–60.  https://doi.org/10.1016/j.atmosenv.2008.02.026.Google Scholar
  81. 81.
    Nakayama T, Sato K, Matsumi Y, Imamura T, Yamazaki A, Uchiyama A. Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene. Atmos Chem Phys. 2013;13(2):531–45.  https://doi.org/10.5194/acp-13-531-2013.Google Scholar
  82. 82.
    Kirchstetter TW, Novakov T, Hobbs PV. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres. 2004;109(D21).  https://doi.org/10.1029/2004JD004999.
  83. 83.
    Sun HL, Biedermann L, Bond TC. Color of brown carbon: a model for ultraviolet and visible light absorption by organic carbon aerosol. Geophysical Research Letters. 2007;34(17).  https://doi.org/10.1029/2007gl029797.
  84. 84.
    Wonaschutz A, Hitzenberger R, Bauer H, Pouresmaeil P, Klatzer B, Caseiro A, et al. Application of the integrating sphere method to separate the contributions of Brown and Black carbon in atmospheric aerosols. Environ Sci Technol. 2009;43(4):1141–6.  https://doi.org/10.1021/es8008503.Google Scholar
  85. 85.
    Bond TC, Bergstrom RW. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol. 2006;40(1):27–67.  https://doi.org/10.1080/02786820500421521.Google Scholar
  86. 86.
    Lack DA, Cappa CD. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos Chem Phys. 2010;10(9):4207–20.  https://doi.org/10.5194/acp-10-4207-2010.Google Scholar
  87. 87.
    Bond TC, Habib G, Bergstrom RW. Limitations in the enhancement of visible light absorption due to mixing state. J Geophys Res-Atmos. 2006;111(D20).  https://doi.org/10.1029/2006jd007315.
  88. 88.
    Laskin A, Laskin J, Nizkorodov SA. Chemistry of atmospheric Brown carbon. Chem Rev. 2015;115(10):4335–82.  https://doi.org/10.1021/cr5006167.Google Scholar
  89. 89.
    De Haan DO, Corrigan AL, Tolbert MA, Jimenez JL, Wood SE, Turley JJ. Secondary organic aerosol formation by self-reactions of methylglyoxal and glyoxal in evaporating droplets. Environ Sci Technol. 2009;43(21):8184–90.  https://doi.org/10.1021/es902152t.Google Scholar
  90. 90.
    Sareen N, Moussa SG, McNeill VF. Photochemical aging of light-absorbing secondary organic aerosol material. J Phys Chem A. 2013;117(14):2987–96.  https://doi.org/10.1021/jp309413j.Google Scholar
  91. 91.
    Nozière B, Dziedzic P, Córdova A. Formation of secondary light-absorbing “fulvic-like” oligomers: a common process in aqueous and ionic atmospheric particles? Geophysical Research Letters. 2007;34(21).  https://doi.org/10.1029/2007GL031300.
  92. 92.
    Nozière B, Esteve W. Light-absorbing aldol condensation products in acidic aerosols: spectra, kinetics, and contribution to the absorption index. Atmos Environ. 2007;41(6):1150–63.  https://doi.org/10.1016/j.atmosenv.2006.10.001.Google Scholar
  93. 93.
    Shapiro EL, Szprengiel J, Sareen N, Jen CN, Giordano MR, McNeill VF. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos Chem Phys. 2009;9(7):2289–300.  https://doi.org/10.5194/acp-9-2289-2009.Google Scholar
  94. 94.
    Ervens B, Turpin BJ, Weber RJ. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos Chem Phys. 2011;11(21):11069–102.  https://doi.org/10.5194/acp-11-11069-2011.Google Scholar
  95. 95.
    Ervens B. Modeling the processing of aerosol and trace gases in clouds and fogs. Chem Rev. 2015;115(10):4157–98.  https://doi.org/10.1021/cr5005887.Google Scholar
  96. 96.
    Woo JL, Kim DD, Schwier AN, Li R, McNeill VF. Aqueous aerosol SOA formation: impact on aerosol physical properties. Faraday Discuss 2013;165(0):357–367.  https://doi.org/10.1039/C3FD00032J.
  97. 97.
    Carlton AG, Turpin BJ, Altieri KE, Seitzinger SP, Mathur R, Roselle SJ, et al. CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements. Environ Sci Technol. 2008;42(23):8798–802.  https://doi.org/10.1021/es801192n.Google Scholar
  98. 98.
    Wagner NL, Brock CA, Angevine WM, Beyersdorf A, Campuzano-Jost P, Day D, et al. In situ vertical profiles of aerosol extinction, mass, and composition over the Southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft. Atmos Chem Phys. 2015;15(12):7085–102.  https://doi.org/10.5194/acp-15-7085-2015.Google Scholar
  99. 99.
    Lee HJ, Aiona PK, Laskin A, Laskin J, Nizkorodov SA. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric Brown carbon. Envir Sci Technol. 2014;48(17):10217–26.  https://doi.org/10.1021/es502515r.Google Scholar
  100. 100.
    Zhao R, Lee AKY, Huang L, Li X, Yang F, Abbatt JPD. Photochemical processing of aqueous atmospheric brown carbon. Atmos Chem Phys. 2015;15(11):6087–100.  https://doi.org/10.5194/acp-15-6087-2015.Google Scholar
  101. 101.
    Zhong M, Jang M. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight. Atmos Chem Phys. 2014;14(3):1517–25.  https://doi.org/10.5194/acp-14-1517-2014.Google Scholar
  102. 102.
    Forrister H, Liu J, Scheuer E, Dibb J, Ziemba L, Thornhill KL, et al. Evolution of brown carbon in wildfire plumes. Geophys Res Lett. 2015;42(11):4623–30.  https://doi.org/10.1002/2015gl063897.Google Scholar
  103. 103.
    De Haan DO, Hawkins LN, Welsh HG, Pednekar R, Casar JR, Pennington EA, et al. Brown carbon production in ammonium- or amine-containing aerosol particles by reactive uptake of methylglyoxal and photolytic cloud cycling. Environ Sci Technol. 2017;51(13):7458–66.  https://doi.org/10.1021/acs.est.7b00159.Google Scholar
  104. 104.
    Laskin J, Laskin A, Roach PJ, Slysz GW, Anderson GA, Nizkorodov SA, et al. High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal Chem. 2010;82(5):2048–58.  https://doi.org/10.1021/ac902801f.Google Scholar
  105. 105.
    Updyke KM, Nguyen TB, Nizkorodov SA. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos Environ. 2012;63:22–31.  https://doi.org/10.1016/j.atmosenv.2012.09.012.Google Scholar
  106. 106.
    Phillips SM, Bellcross AD, Smith GD. Light absorption by Brown carbon in the southeastern United States is pH-dependent. Environ Sci Technol. 2017;51(12):6782–90.  https://doi.org/10.1021/acs.est.7b01116.Google Scholar
  107. 107.
    Alexander DTL, Crozier PA, Anderson JR. Brown carbon spheres in East Asian outflow and their optical properties. Science. 2008;321(5890):833–6.  https://doi.org/10.1126/science.1155296.Google Scholar
  108. 108.
    Lukacs H, Gelencser A, Hammer S, Puxbaum H, Pio C, Legrand M et al. Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe. J Geophys Res-Atmos. 2007;112(D23).  https://doi.org/10.1029/2006jd008151.
  109. 109.
    Washenfelder RA, Attwood AR, Brock CA, Guo H, Xu L, Weber RJ, et al. Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys Res Lett. 2015;42(2):653–64.  https://doi.org/10.1002/2014GL062444.Google Scholar
  110. 110.
    Cheng Y, He KB, Zheng M, Duan FK, Du ZY, Ma YL, et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing. China Atmos Chem Phys. 2011;11(22):11497–510.  https://doi.org/10.5194/acp-11-11497-2011.Google Scholar
  111. 111.
    Zhang XL, Lin YH, Surratt JD, Zotter P, Prevot ASH, Weber RJ. Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: a contrast in secondary organic aerosol. Geophys Res Lett. 2011;38  https://doi.org/10.1029/2011gl049385.
  112. 112.
    Hecobian A, Zhang X, Zheng M, Frank N, Edgerton ES, Weber RJ. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the southeastern United States. Atmos Chem Phys. 2010;10(13):5965–77.  https://doi.org/10.5194/acp-10-5965-2010.Google Scholar
  113. 113.
    Andreae MO, Gelencser A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys. 2006;6:3131–48.  https://doi.org/10.5194/acp-6-3131-2006.Google Scholar
  114. 114.
    Bluvshtein N, Lin P, Flores JM, Segev L, Mazar Y, Tas E, et al. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores. J Geophys Res: Atmos. 2017;122(10):5441–56.  https://doi.org/10.1002/2016JD026230.Google Scholar
  115. 115.
    Pokhrel RP, Beamesderfer ER, Wagner NL, Langridge JM, Lack DA, Jayarathne T, et al. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmos Chem Phys. 2017;17(8):5063–78.  https://doi.org/10.5194/acp-17-5063-2017.Google Scholar
  116. 116.
    Hoffer A, Tóth Á, Pósfai M, Chung CE, Gelencsér A. Brown carbon absorption in the red and near-infrared spectral region. Atmos Meas Tech. 2017;10(6):2353–9.  https://doi.org/10.5194/amt-10-2353-2017.Google Scholar
  117. 117.
    Moosmuller H, Chakrabarty RK, Arnott WP. Aerosol light absorption and its measurement: a review. J Quant Spectrosc Radiat Transf. 2009;110(11):844–78.  https://doi.org/10.1016/j.jqsrt.2009.02.035.Google Scholar
  118. 118.
    Park RJ, Kim MJ, Jeong JI, Youn D, Kim S. A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia. Atmos Environ. 2010;44(11):1414–21.  https://doi.org/10.1016/j.atmosenv.2010.01.042.Google Scholar
  119. 119.
    Lin G, Penner JE, Flanner MG, Sillman S, Xu L, Zhou C. Radiative forcing of organic aerosol in the atmosphere and on snow: effects of SOA and brown carbon. J Geophys Res: Atmos. 2014;119(12):7453–76.  https://doi.org/10.1002/2013JD021186.Google Scholar
  120. 120.
    Chen Y, Bond TC. Light absorption by organic carbon from wood combustion. Atmos Chem Phys. 2010;10(4):1773–87.  https://doi.org/10.5194/acp-10-1773-2010.Google Scholar
  121. 121.
    Bahadur R, Praveen PS, Xu Y, Ramanathan V. Solar absorption by elemental and brown carbon determined from spectral observations. Proc Natl Acad Sci. 2012;109(43):17366–71.  https://doi.org/10.1073/pnas.1205910109.Google Scholar
  122. 122.
    Cheng Y, He K-b, Engling G, Weber R, Liu J-m, Du Z-y et al. Brown and black carbon in Beijing aerosol: implications for the effects of brown coating on light absorption by black carbon. Sci Total Environ 2017;599:1047–1055.  https://doi.org/10.1016/j.scitotenv.2017.05.061.
  123. 123.
    Paredes-Miranda G, Arnott WP, Jimenez JL, Aiken AC, Gaffney JS, Marley NA. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign. Atmos Chem Phys. 2009;9(11):3721–30.  https://doi.org/10.5194/acp-9-3721-2009.Google Scholar
  124. 124.
    Epstein SA, Riipinen I, Donahue NM. A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol. Environ Sci Technol. 2010;44(2):743–8.  https://doi.org/10.1021/es902497z.Google Scholar
  125. 125.
    Tao Y, McMurry PH. Vapor pressures and surface free energies of C14-C18 monocarboxylic acids and C5 and C6 dicarboxylic acids. Environ Sci Technol. 1989;23(12):1519–23.  https://doi.org/10.1021/es00070a011.Google Scholar
  126. 126.
    Bilde M, Pandis SN. Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of α- and β-pinene. Environ Sci Technol. 2001;35(16):3344–9.  https://doi.org/10.1021/es001946b.Google Scholar
  127. 127.
    Stanier CO, Donahue NM, Pandis SN. Parameterization of secondary organic aerosol mass fractions from smog chamber data. Atmos Environ. 2008;42(10):2276–99.  https://doi.org/10.1016/j.atmosenv.2007.12.042.Google Scholar
  128. 128.
    Bian F, Bowman FM. Theoretical method for lumping multicomponent secondary organic aerosol mixtures. Environ Sci Technol. 2002;36(11):2491–7.  https://doi.org/10.1021/es015600s.Google Scholar
  129. 129.
    Bian F, Bowman FM. A lumping model for composition- and temperature-dependent partitioning of secondary organic aerosols. Atmos Environ. 2005;39(7):1263–74.  https://doi.org/10.1016/j.atmosenv.2004.10.044.Google Scholar
  130. 130.
    Samset BH, Myhre G, Schulz M, Balkanski Y, Bauer S, Berntsen TK, et al. Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos Chem Phys. 2013;13(5):2423–34.  https://doi.org/10.5194/acp-13-2423-2013.Google Scholar
  131. 131.
    Tsigaridis K. Study of the organic aerosols in the atmosphere and their impact on climate, with the use of three-dimensional global models. Heraklion: University of Crete; 2003.Google Scholar
  132. 132.
    Andreae MO, Afchine A, Albrecht R, Holanda BA, Artaxo P, Barbosa HMJ, et al. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmos Chem Phys. 2018;2018:921–961. https://doi.org/10.5194/acp-18-921-2018.Google Scholar
  133. 133.
    Shrivastava M, Zhao C, Easter RC, Qian Y, Zelenyuk A, Fast JD, et al. Sensitivity analysis of simulated SOA loadings using a variance-based statistical approach. J Advan Model Earth Syst. 2016;8(2):499–519.  https://doi.org/10.1002/2015MS000554.Google Scholar
  134. 134.
    Marvel K, Schmidt GA, Shindell D, Bonfils C, LeGrande AN, Nazarenko L, et al. Do responses to different anthropogenic forcings add linearly in climate models? Environ Res Lett. 2015;10(10):104010.  https://doi.org/10.1088/1748-9326/10/10/104010.Google Scholar
  135. 135.
    Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, et al. Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci. 2010;3(8):525–32.  https://doi.org/10.1038/ngeo905.Google Scholar
  136. 136.
    Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos Chem Phys. 2010;10(4):1701–37.  https://doi.org/10.5194/acp-10-1701-2010.Google Scholar
  137. 137.
    Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A, Forster PM, et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature. 2013;503(7474):67–71.  https://doi.org/10.1038/nature12674.Google Scholar
  138. 138.
    Jacobson MZ. Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J Geophys Res-Atmos. 1999;104(D3):3527–42.  https://doi.org/10.1029/1998jd100054.Google Scholar
  139. 139.
    Jacobson MZ. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res-Atmos. 2002;107(D19).  https://doi.org/10.1029/2001jd001376.
  140. 140.
    Zhang Y, Forrister H, Liu J, Dibb J, Anderson B, Schwarz JP, et al. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nat Geosci. 2017;10(7):486–9.  https://doi.org/10.1038/ngeo2960.Google Scholar
  141. 141.
    Haywood JM, Shine KP. Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model. Q J R Meteorol Soc. 1997;123(543):1907–30.  https://doi.org/10.1002/qj.49712354307.Google Scholar
  142. 142.
    Zarzycki CM, Bond TC. How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophysical Research Letters. 2010;37(20).  https://doi.org/10.1029/2010GL044555.
  143. 143.
    Jathar SH, Farina SC, Robinson AL, Adams PJ. The influence of semi-volatile and reactive primary emissions on the abundance and properties of global organic aerosol. Atmos Chem Phys. 2011;11(15):7727–46.  https://doi.org/10.5194/acp-11-7727-2011.Google Scholar
  144. 144.
    Donahue NM, Robinson AL, Stanier CO, Pandis SN. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ Sci Technol. 2006;40(8):2635–43.  https://doi.org/10.1021/es052297c.Google Scholar
  145. 145.
    Myhre G, Samset BH, Schulz M, Balkanski Y, Bauer S, Berntsen TK, et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys. 2013;13(4):1853–77.  https://doi.org/10.5194/acp-13-1853-2013.Google Scholar
  146. 146.
    Carlton AG, Pinder RW, Bhave PV, Pouliot GA. To what extent can biogenic SOA be controlled? Environ Sci Technol. 2010;44(9):3376–80.  https://doi.org/10.1021/es903506b.Google Scholar
  147. 147.
    Jo DS, Park RJ, Lee S, Kim S-W, Zhang X. A global simulation of brown carbon: implications for photochemistry and direct radiative effect. Atmos Chem Phys. 2016;16(5):3413–32.  https://doi.org/10.5194/acp-16-3413-2016.Google Scholar
  148. 148.
    Heald CL, Henze DK, Horowitz LW, Feddema J, Lamarque JF, Guenther A, et al. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J Geophys Res: Atmos. 2008;113(D5):D05211.  https://doi.org/10.1029/2007JD009092.Google Scholar
  149. 149.
    Liao H, Chen W-T, Seinfeld JH. Role of climate change in global predictions of future tropospheric ozone and aerosols. Journal of Geophysical Research: Atmospheres. 2006;111(D12).  https://doi.org/10.1029/2005JD006852.
  150. 150.
    Pfister GG, Hess PG, Emmons LK, Rasch PJ, Vitt FM. Impact of the summer 2004 Alaska fires on top of the atmosphere clear-sky radiation fluxes. Journal of Geophysical Research: Atmospheres. 2008;113(D2).  https://doi.org/10.1029/2007JD008797.
  151. 151.
    Ji Z, Kang S, Cong Z, Zhang Q, Yao T. Simulation of carbonaceous aerosols over the third pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Clim Dyn. 2015;45(9):2831–46.  https://doi.org/10.1007/s00382-015-2509-1.Google Scholar
  152. 152.
    Ghan SJ, Liu X, Easter RC, Zaveri R, Rasch PJ, Yoon J-H, et al. Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J Clim. 2012;25(19):6461–76.  https://doi.org/10.1175/jcli-d-11-00650.1.Google Scholar
  153. 153.
    Boucher O. Atmospheric aerosols: Properties and climate impacts: Springer; 2015.Google Scholar
  154. 154.
    Lin G, Sillman S, Penner JE, Ito A. Global modeling of SOA: the use of different mechanisms for aqueous-phase formation. Atmos Chem Phys. 2014;14(11):5451–75.  https://doi.org/10.5194/acp-14-5451-2014.Google Scholar
  155. 155.
    Liu J, Horowitz LW, Fan S, Carlton AG, Levy H. Global in-cloud production of secondary organic aerosols: implementation of a detailed chemical mechanism in the GFDL atmospheric model AM3. Journal of Geophysical Research: Atmospheres. 2012;117(D15):n/a-n/a.  https://doi.org/10.1029/2012JD017838.
  156. 156.
    He C, Liu J, Carlton AG, Fan S, Horowitz LW, Levy Ii H, et al. Evaluation of factors controlling global secondary organic aerosol production from cloud processes. Atmos Chem Phys. 2013;13(4):1913–26.  https://doi.org/10.5194/acp-13-1913-2013.Google Scholar
  157. 157.
    Wang X, Heald CL, Liu J, Weber RJ, Campuzano-Jost P, Jimenez JL, et al. Exploring the observational constraints on the simulation of brown carbon. Atmos Chem Phys. 2018;18(2):635–53.  https://doi.org/10.5194/acp-18-635-2018.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Climate Systems ResearchColumbia UniversityNew YorkUSA
  2. 2.NASA Goddard Institute for Space StudiesNew YorkUSA
  3. 3.Environmental Chemical Processes Laboratory, Department of ChemistryUniversity of CreteHeraklionGreece

Personalised recommendations