Advertisement

Current Climate Change Reports

, Volume 4, Issue 2, pp 128–144 | Cite as

Mechanisms and Predictability of Pacific Decadal Variability

  • Zhengyu Liu
  • Emanuele Di Lorenzo
Decadal Predictability and Prediction (T Delworth, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Decadal Predictability and Prediction

Abstract

Purpose of Review

This paper reviews recent progress in the understanding and prediction of pacific decadal variability (PDV). The PDV is now recognized to consist of multiple ocean-atmosphere modes and to be caused by multiple processes. At the leading order, PDV can be viewed as the reddening process of stochastic atmospheric variability on the extratropical ocean. However, PDV is also strongly tied to teleconnection dynamics interacting with the tropics, primarily the interactions between meridional modes in the extra-tropics and ENSO, and between the ENSO teleconnections and the dominant modes of atmospheric variability in the mid-latitude.

Recent Findings

Extratropical oceanic Rossby waves are found to be crucial for determining the decadal time scales of the PDV and provide potentially an important source of predictability of PDV. Preliminary experiments with GCMs and empirical linear inverse models have shown some skill for the prediction of PDV in ocean surface temperatures. While the climate predictions in the first few years depend significantly on the oceanic initial condition, predictions of near decadal time scales are contributed mostly by the global warming trend. In addition, recent studies explored the role of ocean subsurface dynamics for multi-decadal predictability in the Pacific and suggest that subsurface dynamics may lead to important sources of decadal predictability in regional upwelling systems, namely the eastern boundary and polar gyre. Overall, the predictability of PDV and the related surface and subsurface signals remain to be much studied.

Summary

Recent studies also start to explore the relation between PDV and global warming. It has been suggested that PDV can slow down or accelerate the global warming trend significantly. The influence of the anthropogenic climate change on PDV, however, has remained unclear.

Keywords

Decadal variability modes Stochastic driving Oceanic Rossby wave Climate prediction Tropical-extratropical interaction Modulation of global warming 

Notes

Funding Information

This work is supported by NSF and NSFC41630527.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Abe H, Tanimoto Y, Hasegawa T, Ebuchi N. Oceanic Rossby waves over eastern tropical Pacific of both hemispheres forced by anomalous surface winds after mature phase of ENSO. J Phys Oceanogr. 2016;46(11):3397–414.  https://doi.org/10.1175/jpo-d-15-0118.1.CrossRefGoogle Scholar
  2. 2.
    Alexander MA. Midlatitude atmosphere-ocean interaction during El Niño. Part I: the North Pacific Ocean. J Clim. 1992a;5:944–58.CrossRefGoogle Scholar
  3. 3.
    Alexander MA. Extratropical air-sea interaction, SST variability and the Pacific Decadal Oscillation (PDO). In: Sun D, Bryan F, editors. Climate dynamics: why does climate vary. Washington D. C: AGU Monograph #189; 2010. p. 123–48.CrossRefGoogle Scholar
  4. 4.
    Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD. The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim. 2002;15(16):2205–31.  https://doi.org/10.1175/1520-0442(2002)015<2205:tabtio>2.0.co;2.CrossRefGoogle Scholar
  5. 5.
    Anderson BT. Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J Geophys Res-Atmos. 2003;108(D23):18.  https://doi.org/10.1029/2003jd003805.CrossRefGoogle Scholar
  6. 6.
    Anderson BT, Perez RC, Karspeck A. Triggering of El Nino onset through trade wind-induced charging of the equatorial Pacific. Geophys Res Lett. 2013;40(6):1212–6.  https://doi.org/10.1002/grl.50200.CrossRefGoogle Scholar
  7. 7.
    Ashok K, Behera S, Rao S, Weng H, Yamagata T. El Nino Modoki and its possible teleconnection. J Geophys Res. 2007;112  https://doi.org/10.1029/2006JC003798.
  8. 8.
    Barnett TP, Pierce DW, Latif M, Dommenget D, Saravanan R. Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys Res Lett. 1999;26(5):615–8.  https://doi.org/10.1029/1999gl900042.CrossRefGoogle Scholar
  9. 9.
    Boer G. Decadal potential predictability of twenty-first century climate. Clim Dyn. 2011;36:1119–33.CrossRefGoogle Scholar
  10. 10.
    Boer G, Kharin V, Merryfield W. Decadal predictability and forecast skill. Clim Dyn. 2013;38  https://doi.org/10.1007//s00382-013-1705-0.
  11. 11.
    Bograd SJ, Pozo Buil M, Di Lorenzo E, Castro CG, Schroeder ID, Goericke R, et al. Changes in source waters to the Southern California Bight. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 2015;112:42–52.  https://doi.org/10.1016/j.dsr2.2014.04.009.CrossRefGoogle Scholar
  12. 12.
    Bond NA, Cronin MF, Freeland H, Mantua N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett. 2015;42:3414–20.CrossRefGoogle Scholar
  13. 13.
    Capotondi A, et al. Enhanced upper ocean stratification with climate change in the CMIP3 models. J Geophys Res. 2012a;117(C4):C04031.CrossRefGoogle Scholar
  14. 14.
    Capotondi A, et al. Enhanced upper ocean stratification with climate change in the CMIP3 models. J Geophys Res. 2012b;117(C4):C04031.CrossRefGoogle Scholar
  15. 15.
    Capotondi A, Wittenberg AT, Newman M, di Lorenzo E, Yu JY, Braconnot P, et al. Understanding ENSO Diversity. Bull. Amer. Meteorol. Soc. 2015;96(6):921–38.  https://doi.org/10.1175/bams-d-13-00117.1.CrossRefGoogle Scholar
  16. 16.
    Ceballos LI, Di Lorenzo E, Hoyos CD, Schneider N, Taguchi B. North Pacific gyre oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J Clim. 2009;22(19):5163–74.  https://doi.org/10.1175/2009jcli2848.1.CrossRefGoogle Scholar
  17. 17.
    Chen X, Tung KK. Varying planetary heat sink led to global-warming slowdown and acceleration. Science. 2014;345:897–903.CrossRefGoogle Scholar
  18. 18.
    Chen XY, Wallace JM. ENSO-Like Variability: 1900-2013. J Clim. 2015;28(24):9623–41.  https://doi.org/10.1175/jcli-d-15-0322.1.CrossRefGoogle Scholar
  19. 19.
    Cheng J, Liu Z, Zhang S, Liu W, Dong L, Liu P, et al. Interdecadal variability of Atlantic meridional overturning circulation in global warming. PNAS. 2016;113:3175–8.  https://doi.org/10.1073/pnas.1519827113.CrossRefGoogle Scholar
  20. 20.
    Chhak KC, Di Lorenzo E, Schneider N, Cummins PF. Forcing of low-frequency ocean variability in the Northeast Pacific. J Clim. 2009;22(5):1255–76.  https://doi.org/10.1175/2008jcli2639.1.CrossRefGoogle Scholar
  21. 21.
    Chiang JCH, Vimont DJ. Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J Clim. 2004;17(21):4143–58.  https://doi.org/10.1175/jcli4953.1.CrossRefGoogle Scholar
  22. 22.
    Cloern JE, Hieb KA, Jacobson T, Sanso B, Di Lorenzo E, Stacey MT, et al. Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific. Geophys Res Lett. 2010;37  https://doi.org/10.1029/2010gl044774.
  23. 23.
    Cobb KM, Westphal N, Sayani HR, Watson JT, Di Lorenzo E, Cheng H, et al. Highly variable El Nino-southern oscillation throughout the Holocene. Science. 2013;339(6115):67–70.  https://doi.org/10.1126/science.1228246.CrossRefGoogle Scholar
  24. 24.
    Colin de Verdière A. On mean flow instabilities within planetary geostrophic equations. J Phys Oceanogr. 1986;16:1981–4.CrossRefGoogle Scholar
  25. 25.
    Colin de Verdière A, Huck T. Baroclinic instability: an oceanic wave- maker for interdecadal variability. J Phys Oceanogr. 1999;29:893–910.CrossRefGoogle Scholar
  26. 26.
    d’Orgeville MD, Peltier WR. Implications of both statistical equilibrium and global warming simulations with CCSM3. Part I: on the decadal variability in the North Pacific basin J Climate. 2009;22:5277–97.Google Scholar
  27. 27.
    Dai AG. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923-2010. Clim Dyn. 2013;41(3–4):633–46.  https://doi.org/10.1007/s00382-012-1446-5.CrossRefGoogle Scholar
  28. 28.
    Dai A, Fyfe J, Xie S-P, Dai X. Decadal modulation of global surface temperature by internal climate variability. Nat Clim Chang. 2015;5:555–60.CrossRefGoogle Scholar
  29. 29.
    Delworth T, Zhang R, Mann M. Decadal to centennial variability of the Atlantic from observations and models. In: Ocean circulation: mechanisms and impacts, geophysical monograph series 173. Washington, DC: American Geophysical Union; 2007. p. 131–48.Google Scholar
  30. 30.
    Deser C, Phillips AS, Hurrell JW. Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim. 2004;17(16):3109–24.  https://doi.org/10.1175/1520-0442(2004)017<3109:picvlb>2.0.co;2.CrossRefGoogle Scholar
  31. 31.
    Deser C, Alexander MA, Xie SP, Phillips AS. Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci. 2010;2:115–43.  https://doi.org/10.1146/annurev-marine-120408-151453.CrossRefGoogle Scholar
  32. 32.
    Di Lorenzo E, Mantua N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat Clim Chang. 2016;6(11):1042–7.  https://doi.org/10.1038/nclimate3082.CrossRefGoogle Scholar
  33. 33.
    Di Lorenzo E, et al. North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett. 2008;35(8):L08607.  https://doi.org/10.1029/2007gl032838.CrossRefGoogle Scholar
  34. 34.
    Di Lorenzo E, et al. Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophys Res Lett. 2009;36  https://doi.org/10.1029/2009gl038261.
  35. 35.
    Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, et al. Central Pacific El Nino and decadal climate change in the North Pacific Ocean. Nat Geosci. 2010;3(11):762–5.  https://doi.org/10.1038/ngeo984.CrossRefGoogle Scholar
  36. 36.
    Di Lorenzo E, et al. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography. 2013;26(4):68–81.CrossRefGoogle Scholar
  37. 37.
    Di Lorenzo E, Liguori G, Schneider N, Furtado JC, Anderson BT, Alexander MA. ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys Res Lett. 2015;42(21):9440–8.  https://doi.org/10.1002/2015gl066281.CrossRefGoogle Scholar
  38. 38.
    Diffenbaugh NS, Swain DL, Touma D. Anthropogenic warming has increased drought risk in California. PNAS. 2015;112(13):3931–6.  https://doi.org/10.1073/pnas.1422385112.CrossRefGoogle Scholar
  39. 39.
    Ding H, Greatbatch RJ, Latif M, Park W, Gerdes R. Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J Clim. 2013;26(19):7650–61.  https://doi.org/10.1175/jcli-d-12-00626.1.CrossRefGoogle Scholar
  40. 40.
    Ding RQ, Li JP, Tseng YH. The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim Dyn. 2015;44(7–8):2017–34.  https://doi.org/10.1007/s00382-014-2303-5.CrossRefGoogle Scholar
  41. 41.
    Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, García-Serrano J, Guemas V, Kimoto M, et al. Initialized near-term regional climate change prediction. Nat Commun. 2013;4:1715.CrossRefGoogle Scholar
  42. 42.
    Emile-Geay, J. T., Cobb, K. M., Mann, M. E., Wittenberg, A. T. (2011). Estimating tropical pacific SST variability over the past millennium. Part 2: reconstructions and uncertainties. Journal of Climate.Google Scholar
  43. 43.
    England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai WJ, et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang. 2014;4(3):222–7.  https://doi.org/10.1038/nclimate2106.CrossRefGoogle Scholar
  44. 44.
    Fang C, Wu L, Zhang X. The impact of global warming on the Pacific decadal oscillation and the possible mechanism. Adv Atmos Sci. 2014;31:118–30.CrossRefGoogle Scholar
  45. 45.
    Fang J, Yang X-Q. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system. Clim Dyn. 2016;47:1989–2007.CrossRefGoogle Scholar
  46. 46.
    Fogt RL, Bromwich DH. Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J Clim. 2006;19(6):979–97.  https://doi.org/10.1175/jcli3671.1.CrossRefGoogle Scholar
  47. 47.
    Frankignoul C, Sennechael N. Observed influence of North Pacific SST anomalies on the atmospheric circulation. J Clim. 2007;19:592–606.CrossRefGoogle Scholar
  48. 48.
    Frankignoul C, Sennechael N, Kwon YO, Alexander MA. Influence of the meridional shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J Clim. 2011;24(3):762–77.  https://doi.org/10.1175/2010jcli3731.1.CrossRefGoogle Scholar
  49. 49.
    Furtado JC, Di Lorenzo E, Anderson BT, Schneider N. Linkages between the North Pacific oscillation and central tropical Pacific SSTs at low frequencies. Clim Dyn. 2012;39(12):2833–46.  https://doi.org/10.1007/s00382-011-1245-4.CrossRefGoogle Scholar
  50. 50.
    Garreaud RD, Battisti DS. Interannual (ENSO) and interdecadal (ENSO-like) variability in the southern hemisphere tropospheric circulation. J Clim. 1999;12(7):2113–23.  https://doi.org/10.1175/1520-0442(1999)012<2113:ieaiel>2.0.co;2.CrossRefGoogle Scholar
  51. 51.
    Giannakis D, Majda AJ. Limits of predictability in the North Pacific sector of a comprehensive climate model. Geophys Res Lett. 2012;39:6.  https://doi.org/10.1029/2012gl054273.CrossRefGoogle Scholar
  52. 52.
    Griffies S, Bryan K. A predictability study of simulated North Atlantic multidecadal variability. Clim Dyn. 1997;13:459–87.CrossRefGoogle Scholar
  53. 53.
    Gu DF, Philander SGH. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science. 1997;275(5301):805–7.  https://doi.org/10.1126/science.275.5301.805.CrossRefGoogle Scholar
  54. 54.
    Guemas V, Doblas-Reyes FJ, Lienert F, Soufflet Y, Du H. Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J Geophys Res-Atmos. 2012;117:17.  https://doi.org/10.1029/2012jd018004.CrossRefGoogle Scholar
  55. 55.
    Hare SR, Mantua NJ, Francis RC. Inverse production regimes: Alaska and West Coast Pacific salmon. Fisheries. 1999;24(1):6–14.  https://doi.org/10.1577/1548-8446(1999)024<0006:ipr>2.0.co;2.CrossRefGoogle Scholar
  56. 56.
    Hare S, Mantua N. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr. 2000;47:103–45.CrossRefGoogle Scholar
  57. 57.
    Hasselmann K. Stochastic climate models. Part I: theory. Tellus. 1976;28:473–85.CrossRefGoogle Scholar
  58. 58.
    Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, et al. A hierarchical approach to defining marine heatwaves. Prog Oceanogr. 2016;141:227–38.CrossRefGoogle Scholar
  59. 59.
    Hsu HH, Chen YL. Decadal to bi-decadal rainfall variation in the western Pacific: a footprint of South Pacific decadal variability? Geophys Res Lett. 2011;38  https://doi.org/10.1029/2010gl046278.
  60. 60.
    Jin FF. A theory of interdecadal climate variability of the North Pacific ocean-atmosphere system. J Clim. 1997;10(8):1821–35.  https://doi.org/10.1175/1520-0442(1997)010<1821:atoicv>2.0.co;2.CrossRefGoogle Scholar
  61. 61.
    Johnson H, Marshall D. A theory for the surface Atlantic response to thermohaline variability. J Phys Oceanogr. 2002;32:1121–32.CrossRefGoogle Scholar
  62. 62.
    Kao HY, Yu JY. Contrasting eastern-Pacific and Central-Pacific types of ENSO. J Clim. 2009;22(3):615–32.  https://doi.org/10.1175/2008jcli2309.1.CrossRefGoogle Scholar
  63. 63.
    Kaufmann R, Kaupp H, Mann M, Stock J. Reconciling anthropogenic climate change with observed temperature 1998-2008. Proc Nat Acad Sci. 2011;108:11790–3.CrossRefGoogle Scholar
  64. 64.
    Kawase M. Establishment of deep ocean circulation driven by deep-water production. J Phys Oceanogr. 1987;17:2294–317.CrossRefGoogle Scholar
  65. 65.
    Kilduff DP, Di Lorenzo E, Botsford LW, Teo SLH. Changing central Pacific El Ninos reduce stability of North American salmon survival rates. Proc Natl Acad Sci U S A. 2015;112(35):10962–6.  https://doi.org/10.1073/pnas.1503190112.CrossRefGoogle Scholar
  66. 66.
    Kilpatrick T, Schneider N, Di Lorenzo E. Generation of low-frequency spiciness variability in the thermocline. J Phys Oceanogr. 2011;41(2):365–77.  https://doi.org/10.1175/2010jpo4443.1.CrossRefGoogle Scholar
  67. 67.
    Kim H-M, Webster PJ, Curry JA. Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science. 2009;325:77–80.CrossRefGoogle Scholar
  68. 68.
    Kirtman, B. et al., (2013), Near-term climate change: projections and predictability, IPCC AR5, Ch. 5.Google Scholar
  69. 69.
    Kleeman R, McCreary JP, Klinger BA. A mechanism for generating ENSO decadal variability. Geophys Res Lett. 1999;26(12):1743–6.  https://doi.org/10.1029/1999gl900352.CrossRefGoogle Scholar
  70. 70.
    Knutson TR, Manabe S. Model assessment of decadal variability and trends in the tropical Pacific Ocean. J Clim. 1998;11(9):2273–96.  https://doi.org/10.1175/1520-0442(1998)011<2273:maodva>2.0.co;2.CrossRefGoogle Scholar
  71. 71.
    Kosaka Y, Xie SP. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature. 2013;501(7467):403–7.  https://doi.org/10.1038/nature12534.CrossRefGoogle Scholar
  72. 72.
    Kucharski F, Ikram F, Molteni F, Farneti R, Kang IS, No HH, et al. Atlantic forcing of Pacific decadal variability. Clim Dyn. 2016;46(7–8):2337–51.  https://doi.org/10.1007/s00382-015-2705-z.CrossRefGoogle Scholar
  73. 73.
    Kumar A, Wen CH. An oceanic heat content-based definition for the Pacific decadal oscillation. Mon Weather Rev. 2016;144(10):3977–84.  https://doi.org/10.1175/mwr-d-16-0080.1.CrossRefGoogle Scholar
  74. 74.
    Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R. Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim. 2002;15:2233–56.CrossRefGoogle Scholar
  75. 75.
    Kwon Y-O, Deser C. North Pacific decadal variability in the community climate system model version 2. J Clim. 2007;20:2416–33.CrossRefGoogle Scholar
  76. 76.
    Larkin NK, Harrison DE. On the definition of El Nino and associated seasonal average US weather anomalies. Geophys Res Lett. 2005;32(13)  https://doi.org/10.1029/2005gl022738.
  77. 77.
    Latif M, Barnett TP. Causes of decadal climate variability over the North Pacific and North America. Science. 1994;266:634–7.CrossRefGoogle Scholar
  78. 78.
    Latif M, Barnett TP. Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim. 1996;9(10):2407–23.  https://doi.org/10.1175/1520-0442(1996)009<2407:dcvotn>2.0.co;2.CrossRefGoogle Scholar
  79. 79.
    Lee S-K, et al. Pacific origin of the abrupt increases in Indian Ocean heat content during the warming hiatus. Nat Geosci. 2015;8:445–9.CrossRefGoogle Scholar
  80. 80.
    Liguori G., Di Lorenzo E. Meridional Modes and Increasing Pacific decadal variability under greenhouse forcing, Geophys. Res Lett. 2018.  https://doi.org/10.1002/2017GL076548.
  81. 81.
    Linkin ME, Nigam S. The north pacific oscillation-West Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim. 2008;21(9):1979–97.  https://doi.org/10.1175/2007jcli2048.1.CrossRefGoogle Scholar
  82. 82.
    Linsley BK, Wellington GM, Schrag DP. Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science. 2000;290(5494):1145–8.  https://doi.org/10.1126/science.290.5494.1145.CrossRefGoogle Scholar
  83. 83.
    Liu Z, Philander SGH, Pacanowski R. A GCM study of tropical -subtropical upper ocean mass exchange. J Phys Oceanogr. 1994;24:2606–23.CrossRefGoogle Scholar
  84. 84.
    Liu Z, Wu W, Gallimore R, Jacob R. Search for the origins of Pacific decadal climate variability. Geophys Res Lett. 2002;29  https://doi.org/10.1029/2001GL013735.
  85. 85.
    Liu Z, Xie SP. Equatorward propagation of coupled air-sea disturbances with application to the annual cycle of the eastern tropical Pacific. J Atmos Sci. 1994;51:3807–22.CrossRefGoogle Scholar
  86. 86.
    Liu ZY. Planetary wave modes in thermocline circulation: non-Doppler-shift mode, advective mode and green mode. Quat J Royal Meteor Soc. 1999a;125:1315–39.CrossRefGoogle Scholar
  87. 87.
    Liu ZY. Forced planetary wave response in a thermocline gyre. J Phys Oceanogr. 1999b;29:1036–55.CrossRefGoogle Scholar
  88. 88.
    Liu ZY. Dynamics of Interdecadal climate variability: a historical perspective. J Clim. 2012;25(6):1963–95.  https://doi.org/10.1175/2011jcli3980.1.CrossRefGoogle Scholar
  89. 89.
    Liu ZY, Alexander M. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys. 2007;45(2):34.  https://doi.org/10.1029/2005rg000172.CrossRefGoogle Scholar
  90. 90.
    Liu QY, Wen N, Liu ZY. An observational study of the impact of the North Pacific SST on the atmosphere. Geophys Res Lett. 2006;33(18):5.  https://doi.org/10.1029/2006gl026082.CrossRefGoogle Scholar
  91. 91.
    Liu ZY, Liu Y, Wu LX, Jacob R. Seasonal and long-term atmospheric responses to reemerging North Pacific ocean variability: a combined dynamical and statistical assessment. J Clim. 2007;20(6):955–80.  https://doi.org/10.1175/jcli4041.1.CrossRefGoogle Scholar
  92. 92.
    Liu ZY, Fan L, Shin SI, Liu QY. Assessing atmospheric response to surface forcing in the observations. Part II: cross validation of seasonal response using GEFA and LIM. J Clim. 2012a;25(19):6817–34.  https://doi.org/10.1175/jcli-d-11-00630.1.CrossRefGoogle Scholar
  93. 93.
    Liu ZY, Wen N, Fan L. Assessing atmospheric response to surface forcing in the observations. Part I: cross validation of annual response using GEFA, LIM, and FDT. J Clim. 2012b;25(19):6796–816.  https://doi.org/10.1175/jcli-d-11-00545.1.CrossRefGoogle Scholar
  94. 94.
    Liu W, Xie S-P, Lu J. Tracking ocean heat uptake during the surface warming hiatus. Nature Comm. 2016;7  https://doi.org/10.1038/ncomms10926.
  95. 95.
    Mantua N, Hare SR, Zhang Y, Wallace JM, Francis RC. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc. 1997;78:1069–79.CrossRefGoogle Scholar
  96. 96.
    Martinez E, Antoine D, D'Ortenzio F, Gentili B. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science. 2009;326(5957):1253–6.  https://doi.org/10.1126/science.1177012.CrossRefGoogle Scholar
  97. 97.
    McGregor HV, Dima M, Fischer HW, Mulitza S. Rapid 20th-century increase in coastal upwelling off Northwest Africa. Science. 2007;315(5812):637–9.  https://doi.org/10.1126/science.1134839.CrossRefGoogle Scholar
  98. 98.
    Meehl GA, Teng HY. CMIP5 multi- model hindcasts for the mid-1970s shift and early 2000s hiatus and predictions for 2016-2035. Geophys Res Lett. 2014;41(5):1711–6.  https://doi.org/10.1002/2014gl059256.CrossRefGoogle Scholar
  99. 99.
    Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, et al. Decadal prediction: can it be skillful? Bull. Amer. Meteorol. Soc. 2009;90(10):1467–85.  https://doi.org/10.1175/2009bams2778.1.CrossRefGoogle Scholar
  100. 100.
    Meehl GA, Hu AX, Tebaldi C. Decadal prediction in the Pacific region. J Clim. 2010;23(11):2959–73.  https://doi.org/10.1175/2010jcli3296.1.CrossRefGoogle Scholar
  101. 101.
    Meehl GA, Hu AX, Arblaster JM, Fasullo J, Trenberth KE. Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation. J Clim. 2013;26(18):7298–310.  https://doi.org/10.1175/jcli-d-12-00548.1.CrossRefGoogle Scholar
  102. 102.
    Meehl GA, Goddard L, Boer G, Burgman R, Branstator G, Cassou C, et al. Decadal climate prediction: an update from the trenches. Bull. Amer. Meteorol. Soc. 2014;95(2):243–67.  https://doi.org/10.1175/bams-d-12-00241.1.CrossRefGoogle Scholar
  103. 103.
    Meehl GA, Hu AX, Teng HY. Initialized decadal prediction for transition to positive phase of the interdecadal pacific oscillation. Nat Commun. 2016;7:7.  https://doi.org/10.1038/ncomms11718.CrossRefGoogle Scholar
  104. 104.
    Mo KC. Relationships between low-frequency variability in the southern hemisphere and sea surface temperature anomalies. J Clim. 2000;13(20):3599–610.  https://doi.org/10.1175/1520-0442(2000)013<3599:rblfvi>2.0.co;2.CrossRefGoogle Scholar
  105. 105.
    Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, et al. Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci U S A. 2010;107(5):1833–7.  https://doi.org/10.1073/pnas.0906531107.CrossRefGoogle Scholar
  106. 106.
    Mochizuki T, Chikamoto Y, Kimoto M, Ishii M, Tatebe H, Komuro Y, et al. Decadal prediction using a recent series of MIROC global climate models. J Meteorol Soc Jpn. 2012;90A:373–83.  https://doi.org/10.2151/jmsj.2012-A22.CrossRefGoogle Scholar
  107. 107.
    Namias J, Yuan XJ, Cayan DR. Persistence of North Pacific Sea surface temperature and atmospheric flow patterns. J Clim. 1988;1(7):682–703.  https://doi.org/10.1175/1520-0442(1988)001<0682:ponpss>2.0.co;2.CrossRefGoogle Scholar
  108. 108.
    Newman M. Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J Clim. 2007;20(11):2333–56.  https://doi.org/10.1175/jcli4165.1.CrossRefGoogle Scholar
  109. 109.
    Newman M. An empirical benchmark for decadal forecasts of global surface temperature anomalies. J Clim. 2013;26:5260–9.CrossRefGoogle Scholar
  110. 110.
    Newman M, Compo GP, Alexander MA. ENSO-forced variability of the Pacific decadal oscillation. J Clim. 2003;16(23):3853–7.  https://doi.org/10.1175/1520-0442(2003)016<3853:evotpd>2.0.co;2.CrossRefGoogle Scholar
  111. 111.
    Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, di Lorenzo E, et al. The Pacific decadal oscillation, revisited. J Clim. 2016;29(12):4399–427.  https://doi.org/10.1175/jcli-d-15-0508.1.CrossRefGoogle Scholar
  112. 112.
    Nieves V, Willis J, Patzert W. Recent biatus caused by decadal shift in indo-Pacific heating. Science. 2015;349:532–5.CrossRefGoogle Scholar
  113. 113.
    Perkins ML, Holbrook NJ. Can Pacific Ocean thermocline depth anomalies be simulated by a simple linear vorticity model? J Phys Oceanogr. 2001;31(7):1786–806.  https://doi.org/10.1175/1520-0485(2001)031<1786:cpotda>2.0.co;2.CrossRefGoogle Scholar
  114. 114.
    Pierce DW, Barnett TP, Latif M. Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J Clim. 2000;13(6):1173–94.  https://doi.org/10.1175/1520-0442(2000)013<1173:cbtpot>2.0.co;2.CrossRefGoogle Scholar
  115. 115.
    Power S, Colman R. Multi-year predictability in a coupled general circulation model. Clim Dyn. 2006;26(2–3):247–72.  https://doi.org/10.1007/s00382-005-0055-y.CrossRefGoogle Scholar
  116. 116.
    Power S, Casey T, Folland C, Colman A, Mehta V. Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn. 1999;15(5):319–24.  https://doi.org/10.1007/s003820050284.CrossRefGoogle Scholar
  117. 117.
    Pozo Buil M, Di Lorenzo E. Decadal changes in Gulf of Alaska upwelling source waters. Geophys Res Lett. 2015;42(5):1488–95.  https://doi.org/10.1002/2015gl063191.CrossRefGoogle Scholar
  118. 118.
    Pozo Buil M, Di Lorenzo E. Decadal dynamics and predictability of oxygen and subsurface tracers in the California current system. Geophys Res Lett. 2017;44(9):4204–13.  https://doi.org/10.1002/2017gl072931.CrossRefGoogle Scholar
  119. 119.
    Qiu B. Kuroshio extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. J Phys Oceanogr. 2003;33(12):2465–82.  https://doi.org/10.1175/2459.1.CrossRefGoogle Scholar
  120. 120.
    Qiu B, Chen SM. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J Phys Oceanogr. 2005;35(11):2090–103.  https://doi.org/10.1175/jpo2807.1.CrossRefGoogle Scholar
  121. 121.
    Qiu B, Schneider N, Chen SM. Coupled decadal variability in the North Pacific: an observationally constrained idealized model. J Clim. 2007;20(14):3602–20.  https://doi.org/10.1175/jcli4190.1.CrossRefGoogle Scholar
  122. 122.
    Revelard A, Frankignoul C, Sennechael N, Kwon YO, Qiu B. Influence of the decadal variability of the Kuroshio extension on the atmospheric circulation in the cold season. J Clim. 2016;29(6):2123–44.  https://doi.org/10.1175/jcli-d-15-0511.1.CrossRefGoogle Scholar
  123. 123.
    Roemmich D, McGowan J. Climatic warming and the decline of zooplankton in the California current. Science. 1995;267:1324–6.CrossRefGoogle Scholar
  124. 124.
    Rogers JC. The North Pacific oscillation. J Climatol. 1981;1:39–57.  https://doi.org/10.1002/joc.3370010106.CrossRefGoogle Scholar
  125. 125.
    Schneider N, Cornuelle BD. The forcing of the Pacific decadal oscillation. J Clim. 2005;18(21):4355–73.  https://doi.org/10.1175/jcli3527.1.CrossRefGoogle Scholar
  126. 126.
    Schneider N, Miller AJ. Predicting western North Pacific Ocean climate. J Clim. 2001;14(20):3997–4002.  https://doi.org/10.1175/1520-0442(2001)014<3997:pwnpoc>2.0.co;2.CrossRefGoogle Scholar
  127. 127.
    Schneider N, Venzke S, Miller AJ, Pierce DW, Barnett TP, Deser C, et al. Pacific thermocline bridge revisited. Geophys Res Lett. 1999b;26(9):1329–32.  https://doi.org/10.1029/1999gl900222.CrossRefGoogle Scholar
  128. 128.
    Schneider N, Miller AJ, Pierce DW. Anatomy of North Pacific decadal variability. J Clim. 2002;15(6):586–605.  https://doi.org/10.1175/1520-0442(2002)015<0586:aonpdv>2.0.co;2.CrossRefGoogle Scholar
  129. 129.
    Seager R, Harnik N, Robinson WA, Kushnir Y, Ting M, Huang HP, et al. Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Q J R Meteorol Soc. 2005;131(608):1501–27.  https://doi.org/10.1256/qj.04.96.CrossRefGoogle Scholar
  130. 130.
    Smirnov D, Newman M, Alexander M, Kwon Y-O, Frankignoul C. Investigating the local atmospheric response to a realistic shift in the Oyashio Sea surface temperature front. J Clim. 2015;28:1126–47.CrossRefGoogle Scholar
  131. 131.
    Solomon S, Rosenlof K, Portmann R, Daniel J, Davis S, Sanford T, et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science. 2010;327:1219–23.CrossRefGoogle Scholar
  132. 132.
    Sugiura N, Awaji T, Masuda S, Toyoda T, Igarashi H, Ishikawa Y, et al. Potential for decadal predictability in the North Pacific region. Geophys Res Lett. 2009;36:6.  https://doi.org/10.1029/2009gl039787.CrossRefGoogle Scholar
  133. 133.
    Sun JQ, Wang HJ. Relationship between Arctic oscillation and Pacific decadal oscillation on decadal timescale. Chin Sci Bull. 2006;51(1):75–9.  https://doi.org/10.1007/s11434-004-0221-3.CrossRefGoogle Scholar
  134. 134.
    Sydeman, W.J., Thompson, S.A., 2010. The California current integrated ecosystem assessment (IEA), module II: trends and variability in climate-ecosystem state.Google Scholar
  135. 135.
    Taguchi B, Schneider N. Origin of decadal-scale, eastward-propagating heat content anomalies in the North Pacific. J Clim. 2014;27(20):7568–86.  https://doi.org/10.1175/jcli-d-13-00102.1.CrossRefGoogle Scholar
  136. 136.
    Taguchi B, Xie SP, Schneider N, Nonaka M, Sasaki H, Sasai Y. Decadal variability of the Kuroshio extension: observations and an eddy-resolving model hindcast. J Clim. 2007;20(11):2357–77.  https://doi.org/10.1175/jcli4142.1.CrossRefGoogle Scholar
  137. 137.
    Teng HY, Branstator G, Meehl GA. Predictability of the atlantic overturning circulation and associated surface patterns in two CCSM3 climate change ensemble experiments. J Clim. 2011;24(23):6054–76.  https://doi.org/10.1175/2011jcli4207.1.CrossRefGoogle Scholar
  138. 138.
    Trenberth K, Fasullo J, Balmaseda M. Earth’s energy imbalance. J Clim. 2014a;27:3129–44.CrossRefGoogle Scholar
  139. 139.
    Trenberth K, Fasullo J, Branstator G, Phillips A. Seasonal aspects of the recent pause in surface warming. Nat Clim Chang. 2014b;4:911–6.CrossRefGoogle Scholar
  140. 140.
    Vimont DJ. The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J Clim. 2005;18(12):2080–92.  https://doi.org/10.1175/jcli3365.1.CrossRefGoogle Scholar
  141. 141.
    Vimont DJ. Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean. J Clim. 2010;23(21):5771–89.  https://doi.org/10.1175/2010jcli3532.1.CrossRefGoogle Scholar
  142. 142.
    Vimont DJ, Battisti DS, Hirst AC. Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett. 2001;28(20):3923–6.  https://doi.org/10.1029/2001gl013435.CrossRefGoogle Scholar
  143. 143.
    Vimont D, Wallace M, Battisti D. The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim. 2003;16:2668–75.CrossRefGoogle Scholar
  144. 144.
    Walker Sir GT, Bliss EW. World weather V. Mem R Meteorol Soc. 1932;4:53–83.Google Scholar
  145. 145.
    Wang SY, Hipps L, Gillies RR, Yoon JH. Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys Res Lett. 2014;41:3220–6.CrossRefGoogle Scholar
  146. 146.
    Wang X, Jin FF, Wang Y. A tropical ocean recharge mechanism for climate variability. Part I: equatorial heat content changes induced by the off-equatorial wind. J Clim. 2003;16:3585–98.CrossRefGoogle Scholar
  147. 147.
    Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M. Contribution of natural decadal variability to global warming acceleration and hiatus. Nat Clim Chang. 2014;4:893–7.CrossRefGoogle Scholar
  148. 148.
    Weng HY, Behera SK, Yamagata T. Anomalous winter climate conditions in the Pacific rim during recent El NiA +/− o Modoki and El NiA +/− o events. Clim Dyn. 2009;32(5):663–74.  https://doi.org/10.1007/s00382-008-0394-6.CrossRefGoogle Scholar
  149. 149.
    Wu L, Liu Z, Gallimore R, Jacob R, Lee D, Zhong Y. Pacific decadal variability: the tropical Pacific mode and the North Pacific mode. J Clim. 2003;16(8):1101–20.  https://doi.org/10.1175/1520-0442(2003)16<1101:pdvttp>2.0.co;2.CrossRefGoogle Scholar
  150. 150.
    Xie SP. A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability. J Clim. 1999;12(1):64–70.  https://doi.org/10.1175/1520-0442-12.1.64.CrossRefGoogle Scholar
  151. 151.
    Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman B, Jin F-F. El Nino in a changing climate. Nature. 2009;461:511–4.Google Scholar
  152. 152.
    Zhang LP, Delworth TL. Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the geophysical fluid dynamics laboratory. J Clim. 2015;28(19):7678–701.  https://doi.org/10.1175/jcli-d-14-00647.1.CrossRefGoogle Scholar
  153. 153.
    Zhang L, Delworth TL. Simulated response of the Pacific decadal oscillation to climate change. J Clim. 2016;29(16):5999–6018.  https://doi.org/10.1175/JCLI-D-15-0690.1.CrossRefGoogle Scholar
  154. 154.
    Zhang DX, McPhaden MJ. Decadal variability of the shallow Pacific meridional overturning circulation: relation to tropical sea surface temperatures in observations and climate change models. Ocean Model. 2006;15(3–4):250–73.  https://doi.org/10.1016/j.ocemod.2005.12.005.CrossRefGoogle Scholar
  155. 155.
    Zhang Y, Wallace JM, Battisti DS. ENSO-like interdecadal variability: 1900-93. J Clim. 1997;10(5):1004–20.  https://doi.org/10.1175/1520-0442(1997)010<1004:eliv>2.0.co;2.CrossRefGoogle Scholar
  156. 156.
    Zhang R, Delworth TL, Held IM. Can the Atlantic Ocean drive the observed multidecadal variability in northern hemisphere mean temperature? Geophys Res Lett. 2007;34(2):6.  https://doi.org/10.1029/2006gl028683.CrossRefGoogle Scholar
  157. 157.
    Zhang H, Clement A, Di Nezio P. The South Pacific meridional mode: a mechanism for ENSO-like variability. J Clim. 2014;27(2):769–83.  https://doi.org/10.1175/jcli-d-13-00082.1.CrossRefGoogle Scholar
  158. 158.
    Zhong Y, Liu Z, Jacob R. The origin of Pacific decadal variability in the NCAR-CCSM3. J Clim. 2008;21:114–33.CrossRefGoogle Scholar
  159. 159.
    Zhong YF, Liu Z. On the mechanism of Pacific multidecadal climate variability in CCSM3: the role of subpolar North Pacific Ocean. J Phys Oceanogr. 2009;39:2052–76.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Atmospheric Science Program, Department of GeographyThe Ohio State UniversityColumbusUSA
  2. 2.Program in Ocean Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations