Skip to main content

The Effects of Solar Radiation Management on the Carbon Cycle

Abstract

Purpose of Review

Review existing studies on the carbon cycle impact of different solar geoengineering schemes.

Recent Findings

The effect of solar geoengineering on terrestrial primary productivity is typically much smaller than that of CO2 fertilization. Changes in the partitioning between direct and diffuse radiation in response to stratospheric aerosol injection could substantially alter modeled plant productivity. Inclusion of the nitrogen cycle would further modify the terrestrial response to solar geoengineering. Relative to a high-CO2 world, solar geoengineering, via cooling the surface ocean, would increase CO2 solubility, enhancing oceanic CO2 uptake. However, the effect from geoengineering-induced changes in ocean circulation and marine biology would be more complicated. Solar geoengineering would have a small effect on surface ocean acidification, but could accelerate acidification in the deep ocean. Solar geoengineering would reduce atmospheric CO2, but the relative contribution from the ocean sink and land sink is uncertain.

Summary

To date, there are only a few studies on the carbon cycle response to solar geoengineering. Coordinated geoengineering model intercomparison studies are needed to gain a better understanding of the carbon cycle impact of solar geoengineering and feedback on climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Le Quéré CL, et al. Global carbon budget 2016. Earth Syst Sci Data. 2016;8(2):605–49. https://doi.org/10.5194/essd-8-605-2016.

    Article  Google Scholar 

  2. 2.

    IPCC, Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013; Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds.). Cambridge University Press: Cambridge, United Kingdom and New York.

  3. 3.

    Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci. 2009;37(1):117–34. https://doi.org/10.1146/annurev.earth.031208.100206.

  4. 4.

    Frölicher TL, Winton M, Sarmiento JL. Continued global warming after CO2 emissions stoppage. Nat Clim Chang. 2014;4:40–4. https://doi.org/10.1038/nclimate2060.

    Article  Google Scholar 

  5. 5.

    Solomon S, Plattner GK, Knutti R, Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A. 2009;106(6):1704–9. https://doi.org/10.1073/pnas.0812721106.

    CAS  Article  Google Scholar 

  6. 6.

    IPCC, Summary for policymakers. In: Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014; Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T and Minx JC (eds.). Cambridge University Press: Cambridge, United Kingdom and New York.

  7. 7.

    National Research Council. Climate intervention: reflecting sunlight to cool earth. Washington: National Academies Press; 2015. p. 234.

    Google Scholar 

  8. 8.

    Budyko MI. Climate and life. New York: Academic Press; 1974.

    Google Scholar 

  9. 9.

    Crutzen PJ. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Chang. 2006;77(3–4):211–9. https://doi.org/10.1007/s10584-006-9101-y.

    CAS  Article  Google Scholar 

  10. 10.

    Latham J. Control of global warming. Nature. 1990;347(6291):339–40. https://doi.org/10.1038/347339b0.

    Article  Google Scholar 

  11. 11.

    Latham J. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Lett. 2002;3(2-4):52–8. https://doi.org/10.1006/Asle.2002.0048.

    Article  Google Scholar 

  12. 12.

    Early JT. Space-based solar shield to offset greenhouse effect. J Br Interplanet Soc. 1989;42:567–9.

    Google Scholar 

  13. 13.

    Gaskill A. Summary of meeting with US DOE to discuss geoengineering options to prevent long-term climate change. Environ. Ref. Mater., Inc., Research Triangle Park, N. C. 2014

  14. 14.

    Seitz R. Bright water: hydrosols, water conservation and climate change. Clim Chang. 2011;105(3-4):365–81. https://doi.org/10.1007/s10584-010-9965-8.

    Article  Google Scholar 

  15. 15.

    Mitchell DL, Finnegan W. Modification of cirrus clouds to reduce global warming. Environ Res Lett. 2009;4(4):045102. https://doi.org/10.1088/1748-9326/4/4/045102.

    Article  Google Scholar 

  16. 16.

    Caldeira K, Bala G. Reflecting on 50 years of geoengineering research. Earth’s Future. 2016;4(1):10–7. https://doi.org/10.1002/2016EF000454.

    Google Scholar 

  17. 17.

    Kravitz B, Robock A, Boucher O, Schmidt H, Taylor KE, Stenchikov G, et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos Sci Lett. 2011;12:162–7. https://doi.org/10.1002/asl.316.

  18. 18.

    Kravitz B, Caldeira K, Boucher O, Robock A, Rasch PJ, Alterskjaer K, et al. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res Atmos. 2013;118(15):8320–32. https://doi.org/10.1002/jgrd.50646.

  19. 19.

    Kravitz B, Robock A, Tilmes S, Boucher O, English JM, Irvine PJ, et al. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results. Geosci Model Dev. 2015;8(10):3379–92. https://doi.org/10.5194/gmd-8-3379-2015.

  20. 20.

    Ciais P et al. Carbon and other biogeochemical cycles. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013 Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds.). Cambridge University Press: Cambridge, United Kingdom and New York.

  21. 21.

    Cao L, Duan L, Bala G, Caldeira K. Simulated long-term climate response to idealized solar geoengineering. Geophys Res Lett. 2016;43(5):2209–17. https://doi.org/10.1002/2016GL068079.

    Article  Google Scholar 

  22. 22.

    Hong Y, Moore JC, Jevrejeva S, Ji D, Phipps SJ, Lenton A, et al. Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation. Environ Res Lett. 2017;12(3):034009. https://doi.org/10.1088/1748-9326/aa5fb8.

  23. 23.

    Moore JC, Rinke A, Yu X, Ji D, Cui X, Li Y, et al. Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario. J Geophys Res. 2014;119(2):567–83. https://doi.org/10.1002/2013JD021060.

  24. 24.

    Hardman-Mountford NJ, Polimene L, Hirata T, Brewin RJW, Aiken J. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem. J R Soc Interface. 2013;10(9):608. https://doi.org/10.1098/rsif.2013.0701.

    Google Scholar 

  25. 25.

    Matthews HD, Caldeira K. Transient climate-carbon simulations of planetary geoengineering. Proc Natl Acad Sci U S A. 2007;104(24):9949–54. https://doi.org/10.1073/pnas.0700419104.

    CAS  Article  Google Scholar 

  26. 26.

    Matthews HD, Cao L, Caldeira K. Sensitivity of ocean acidification to geoengineered climate stabilization. Geophys Res Lett. 2009;36(10):L10706. https://doi.org/10.1029/2009GL037488.

    Article  Google Scholar 

  27. 27.

    Keller DP, Feng YE, Oschlies A. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat Commun. 2014;5:3304. https://doi.org/10.1038/ncomms4304.

    Google Scholar 

  28. 28.

    Brovkin V, Petoukhov V, Claussen M, Bauer E, Archer D, Jaeger C. Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Clim Chang. 2009;92(3-4):243–59. https://doi.org/10.1007/s10584-008-9490-1.

    CAS  Article  Google Scholar 

  29. 29.

    Tjiputra JF, Grini A, Lee H. Impact of idealized future stratospheric aerosol injection on the large scale ocean and land carbon cycles. J Geophys Res Biogeosci. 2016;120 https://doi.org/10.1002/2015jg003045, doi:10.1002/2015jg003045.

  30. 30.

    Partanen AI, Keller DP, Korhonen H, Matthews HD. Impacts of sea spray geoengineering on ocean biogeochemistry. Geophys Res Lett. 2016;43(14):7600–8. https://doi.org/10.1002/2016GL070111.

    CAS  Article  Google Scholar 

  31. 31.

    Caldeira K, Wickett ME. Anthropogenic carbon and ocean pH. Nature. 2013;425:365–5.

  32. 32.

    Doney SC, Fabry VJ, Feely RA, Kleypas JA. Ocean acidification: the other CO2 problem. Annu Rev Mar Sci. 2009;1(1):169–92. https://doi.org/10.1146/annurev.marine.010908.163834.

    Article  Google Scholar 

  33. 33.

    McNeil BI, Matear R. Climate Change feedback on future ocean acidification. Tellus. 2007;59:191–8.

    Article  Google Scholar 

  34. 34.

    Cao L, Shuangjing W, Meidi Z, Han Z. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change. Environ Res Lett. 2014;9(6):064005. https://doi.org/10.1088/1748-9326/9/6/064005.

    Article  Google Scholar 

  35. 35.

    Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences. 2013;10(10):6225–45. https://doi.org/10.5194/bg-10-6225-2013.

  36. 36.

    Kwiatkowski L, Bopp L, Aumont O, Ciais P, Cox PM, Laufkötter C, et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat Clim Chang. 2017;7(5):355–8. https://doi.org/10.1038/nclimate3265.

  37. 37.

    Curtis PS. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ. 1996;19(2):127–37. https://doi.org/10.1111/j.1365-3040.1996.tb00234.x.

    Article  Google Scholar 

  38. 38.

    Owensby CE, Ham JM, Knapp AK, Auen LM. Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob Change Biol. 1999;5(5):497–506. https://doi.org/10.1046/j.1365-2486.1999.00245.x.

    Article  Google Scholar 

  39. 39.

    Govindasamy B, Thompson S, Duffy PB, Caldeira K, Delire C. Impact Of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett. 2002;29(22):2061. https://doi.org/10.1029/2002GL015911.

    Article  Google Scholar 

  40. 40.

    Naik V, Wuebbles DJ, Delucia EH, Foley JA. Influence of geoengineered climate on the terrestrial biosphere. Environ Manag. 2003;32(3):373–81. https://doi.org/10.1007/s00267-003-2993-7.

    Article  Google Scholar 

  41. 41.

    Glienke SP, Irvine J, Lawrence MG. The impact of geoengineering on vegetation in experiment G1 of the GeoMIP. J Geophys Res Atmos. 2015;120(19):10,196–10, 213. https://doi.org/10.1002/2015JD024202.

    Article  Google Scholar 

  42. 42.

    Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature. 2009;458(7241):1014–7. https://doi.org/10.1038/nature07949.

  43. 43.

    Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, et al. Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res. 2002;107(D6):ACL 2-1–ACL 2-23. https://doi.org/10.1029/2001JD001242.

  44. 44.

    Gu L, Baldocchi D, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, et al. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science. 2003;299(5615):2035–8. https://doi.org/10.1126/science.1078366.

  45. 45.

    Farquhar GD, Roderick ML. Pinatubo, diffuse light, and the carbon cycle. Science. 2003;299(5615):1997–8. https://doi.org/10.1126/science.1080681.

    CAS  Article  Google Scholar 

  46. 46.

    Kalidindi S, Bala G, Modak A, Caldeira K. Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Clim Dyn. 2014;44(9-10):2909–25. https://doi.org/10.1007/s00382-014-2240-3.

    Article  Google Scholar 

  47. 47.

    Xia L, Robock A, Tilmes S, Neely RR III. Stratospheric Sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmos Chem Phys. 2016;16(3):1479–89. https://doi.org/10.5194/acp-16-1479-2016.

    CAS  Article  Google Scholar 

  48. 48.

    Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451(7176):293–6. https://doi.org/10.1038/nature06592.

    CAS  Article  Google Scholar 

  49. 49.

    Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, et al. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences. 2009;6(10):2099–120. https://doi.org/10.5194/bg-6-2099-2009.

  50. 50.

    Bonan GB, Levis S. Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). Geophys Res Lett. 2010;37(7):L07401. https://doi.org/10.1029/2010GL042430.

    Article  Google Scholar 

  51. 51.

    Pongratz JD, Lobell B, Cao L, Caldeira K. Crop Yields in a geoengineered climate. Nat Clim Chang. 2012;2(2):101–5. https://doi.org/10.1038/nclimate1373.

    CAS  Article  Google Scholar 

  52. 52.

    Xia L, Robock A, Cole J, Curry CL, Ji D, Jones A, et al. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res Atmos. 2014;119(14):8695–711. https://doi.org/10.1002/2013JD020630.

  53. 53.

    Parkes B, Challinor A, Nicklin K. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening. Environ Res Lett. 2015;10(8):084003. https://doi.org/10.1088/1748-9326/10/8/084003.

    Article  Google Scholar 

  54. 54.

    Yang H, et al. Potential negative consequences of geoengineering on crop production: a study of Indian groundnut. Geophys Res Lett. 2016;43:11, 786–95. https://doi.org/10.1002/2016GL071209.

    Article  Google Scholar 

  55. 55.

    Robock A, Oman L, Stenchikov GK. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res. 2008;113(D16):D16101. https://doi.org/10.1029/2008JD010050.

    Article  Google Scholar 

  56. 56.

    Jones A, Haywood JM, Alterskjaer K, Boucher O, Cole JNS, Curry CL, et al. The impact of abrupt suspension of solar radiation management termination effect in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res Atmos. 2013;118(17):9743–52. https://doi.org/10.1002/jgrd.50762.

  57. 57.

    Kravitz B, MacMartin DG, Leedal DT, Rasch PJ, Jarvis AJ. Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering. Environ Res Lett. 2014;9(4):044006. https://doi.org/10.1088/1748-9326/9/4/044006.

    Article  Google Scholar 

  58. 58.

    Keith DW, Wagner G, Zabel CL. Solar geoengineering reduces atmospheric carbon burden. Nat Clim Chang. 2017;7(9):617–9. https://doi.org/10.1038/nclimate3376.

    Article  Google Scholar 

  59. 59.

    Reed SC, Yang X, Thornton PE. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytol. 2015;208(2):324–9. https://doi.org/10.1111/nph.13521.

    CAS  Article  Google Scholar 

  60. 60.

    Keller DP, Lenton A, Scott V, Vaughan NE, Bauer N, Ji D, et al. The carbon dioxide removal model Intercomparison project (CDR-MIP): rationale and experimental design. Geosci Model Dev Discuss. 2017; https://doi.org/10.5194/gmd-2017-168, in review.

Download references

Acknowledgements

This work is supported by National Key Basic Research Program of China (2015CB953601), National Natural Science Foundation of China (41675063; 41422503; 41276073), and the Fundamental Research Funds for the Central Universities. I would like to thank Jiujiang for her contribution in making Figs. 1 and Fig. 2.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Long Cao.

Ethics declarations

Conflict of Interest

The author states that he has no financial or personal relationships with any third party whose interests could be positively or negatively influenced by the article’s content.

Additional information

This article is part of the Topical Collection on Carbon Cycle and Climate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, L. The Effects of Solar Radiation Management on the Carbon Cycle. Curr Clim Change Rep 4, 41–50 (2018). https://doi.org/10.1007/s40641-018-0088-z

Download citation

Keywords

  • Solar geoengineering
  • Global carbon cycle
  • Carbon-climate feedback
  • Ocean acidification
  • Primary production
  • Climate change