Skip to main content

Advertisement

Log in

What Caused the Global Surface Warming Hiatus of 1998–2013?

  • Decadal Predictability and Prediction (T Delworth, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Research into the mechanisms for the global warming slowdown or “hiatus” of 1998–2013 is reviewed here. Observational and modeling studies identify tropical Pacific sea surface temperature variability as a major pacemaker of global mean surface temperature (GMST) change, as corroborated by the GMST increase following a major El Niño event. Specifically, the decadal cooling of the tropical Pacific contributes to the recent global warming hiatus. This tropical Pacific pacemaker effect appears larger for decadal than interannual variability, but the decadal effect remains to be quantified from observations. Our critical review of the literature reveals that the internal and radiatively forced GMST changes are distinct in pattern, energetics, mechanism, and predictability. In contrast to greenhouse gas-induced warming that is spatially uniform in sign and driven by energy perturbations, internal variability in GMST is an order of magnitude smaller than spatial variations, for which ocean-atmosphere interaction is of first-order importance while planetary energetics is not. In fact, decadal variability in GMST is poorly correlated with net radiation at the top of the atmosphere, highlighting the need to distinguish internal and forced GMST change in planetary energy budget. While the planetary energy budget can now be closed observationally over multi-decadal periods, the recent hiatus highlights the need and challenges to measure and quantify decadal changes in both global ocean heat uptake (e.g., for the effect of radiative forcing on the hiatus) and heat redistribution in the ocean. Hiatus research has led to a wide recognition of the importance of internal variability for GMST trends over a decade and longer. The strengthened connection between the climate variability and change communities is an important legacy of hiatus research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allan RP, Liu C, Loeb NG, et al. Changes in global net radiative imbalance 1985-2012. Geophys Res Lett. 2014;41:5588–97.

    Article  Google Scholar 

  2. Amaya DJ, Xie S-P, Miller AJ, McPhaden MJ. Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J Geophys Res Oceans. 2015;120:6782–98.

    Article  Google Scholar 

  3. Boer GJ, Smith DM, Cassou C, Doblas-Reyes F, Danabasoglu G, Kirtman B, Kushnir Y, Kimoto M, Meehl GA, Msadek R, Mueller WA, Taylor KE, Zwiers F, Rixen M, Ruprich-Robert Y, Eade R. The decadal climate prediction project (DCPP) contribution to CMIP6. Geosci Model Dev. 2016;9:3751–77.

    Article  Google Scholar 

  4. Brown PT, Li W, Li L, Ming Y. Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophys Res Lett. 2014;41:5175–83.

    Article  Google Scholar 

  5. Brown PT, Li W, Xie S-P. Regions of significant influence on unforced global mean surface air temperature variability in climate models. J Geophys Res Atmos. 2015;120:480–94.

    Article  Google Scholar 

  6. Chen X, Wallace JM. ENSO-like variability: 1900-2013. J Clim. 2015;28:9623–41.

    Article  Google Scholar 

  7. Chen X, Tung K-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science. 2014;345:897–903.

    Article  CAS  Google Scholar 

  8. Chikamoto Y, Timmermann A, Luo J-J, Mochizuki T, Kimoto M, Watanabe M, Ishii M, Xie S-P, Jin F-F. Skilful multi-year predictions of tropical trans-basin climate variability. Nature Comm. 2015;6:6869.

    Article  CAS  Google Scholar 

  9. Chikamoto Y, Mochizuki T, Timmermann A, Kimoto M, Watanabe M. Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys Res Lett. 2016;43:7143–51.

    Article  Google Scholar 

  10. Church JA, Clark PU, Cazenave, et al. Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 1137–216. doi:10.1017/ CBO9781107415324.026.

    Google Scholar 

  11. Clement AC, DiNezio P, Deser C. Rethinking the ocean’s role in the Southern Oscillation. J Clim. 2011;24:4056–72.

    Article  Google Scholar 

  12. Cohen JL, Furtado JC, Barlow M, Alexeev VA, Cherry JE. Asymmetric seasonal temperature trends. Geophys Res Lett. 2012;39:L04705.

    Google Scholar 

  13. Collins M, Knutti R, Arblaster J, et al. Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 1029–136. doi:10.1017/CBO9781107415324.024.

    Google Scholar 

  14. Dai A, Fyfe JC, Xie S-P, Dai X. Decadal modulation of global surface temperature by internal climate variability. Nature Clim Change. 2015;5:555–9.

    Article  Google Scholar 

  15. Dee DP, Uppala SM, Simmons AJ, et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc. 2011;137:553–97.

    Article  Google Scholar 

  16. Delworth TL, Broccoli AJ, Rosati A, et al. GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim. 2006;19:643–74.

    Article  Google Scholar 

  17. Delworth TL, Zeng F, Rosati A, Vecchi GA, Wittenberg AT. A link between the hiatus in global warming and North American drought. J Clim. 2015;28:3834–45.

    Article  Google Scholar 

  18. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature. 2008;453:1090–3.

    Article  CAS  Google Scholar 

  19. Douville H, Voldoire A, Geoffroy O. The recent global warming hiatus: what is the role of Pacific variability? Geophys Res Lett. 2015;42:880–88. doi:10.1002/2014GL062775.

  20. Easterling DR, Wehner MF. Is the climate warming or cooling? Geophys Res Lett. 2009;36:L08706.

    Article  Google Scholar 

  21. England MH, McGrefor S, Spence P, et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim Change. 2014;4:222–7.

    Article  Google Scholar 

  22. Flato G, Marotzke J, Abiodun B, et al. Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 741–866. doi:10.1017/CBO9781107415324.020.

    Google Scholar 

  23. Foster G, Rahmstorf S. Global temperature evolution 1979–2010. Environ Res Lett. 2011;6:044022.

    Article  Google Scholar 

  24. Fyfe JC, Gillett NP. Recent observed and simulated warming. Nature Clim Change. 2014;4:15–151.

    Article  Google Scholar 

  25. Fyfe JC, et al. Making sense of the early-2000s warming slowdown. Nature Clim Change. 2016;6:224–8.

    Article  Google Scholar 

  26. Gleckler PJ, Durack PJ, Stouffer RJ, Johnson GC, Forest CE. Industrial-era global ocean heat uptake doubles in recent decades. Nature Clim Change. 2016;6:394–8.

    Article  Google Scholar 

  27. Gouretski V, Reseghetti F. On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res I. 2010;57:812–33.

    Article  Google Scholar 

  28. Gregory JM, Ingram WJ, Palmer MA, et al. A new method for diagnosing radiative forcing and climate sensiticity. Geophys Res Lett. 2004;31:L03205.

    Google Scholar 

  29. Hansen J, Sato M, Kharecha P, von Schuckmann K. Earth’s energy imbalance and implications. Atmos Chem Phys. 2011;11:13421–49.

    Article  CAS  Google Scholar 

  30. Hausfather Z, Cowtan K, Clarke DC, Jacobs P, Richardson M, Rohde R. Assessing recent warming using instrumentally homogeneous sea surface temperature records. Science Adv. 2017;3:e1601207.

    Article  Google Scholar 

  31. Held IM, et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J Clim. 2010;23:2418–27.

    Article  Google Scholar 

  32. Henley BJ, Meehl GA, Power SB, et al. Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Env Res Lett. 2017; doi:10.1088/1748-9326/aa5cc8. in press

    Google Scholar 

  33. Huang RX. Heaving modes in the world oceans. Clim Dynam. 2015;45:3563–91. doi:10.1007/s00382-015-2557-6.

    Article  Google Scholar 

  34. Huber M, Knutti R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat Geosci. 2014;7:651–6.

    Article  CAS  Google Scholar 

  35. Jia F, Wu L. A study of response of the equatorial Pacific SST to doubled-CO2 forcing in the coupled CAM-1.5-layer reduced-gravity ocean model. J Phys Oceanogr. 2013;43:1288–300.

    Article  Google Scholar 

  36. Ishii M, Kimoto M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr. 2009;65:287–99.

    Article  Google Scholar 

  37. Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc. 1996;77:437–71.

    Article  Google Scholar 

  38. Kamae Y, Shiogama H, Watanabe M, Ishii M, Ueda H, Kimoto M. Recent slowdown of tropical upper tropospheric warming associated with Pacific climate variability. Geophys Res Lett. 2015;42:2995–3003.

    Article  Google Scholar 

  39. Karl TR, Arguez A, Huang B, et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science. 2015;348:1469–72.

    Article  CAS  Google Scholar 

  40. Kaufmann RK, Kauppi H, Mann ML, Stock JH. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci U S A. 2011;108:11790–3.

    Article  CAS  Google Scholar 

  41. Kirtman B, Power SB, Adedoyin JA, et al. Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 953–1028. doi:10.1017/CBO9781107415324.023.

    Google Scholar 

  42. Kobayashi S, Ota Y, Harada Y, et al. The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan. 2015;93:5–48.

    Article  Google Scholar 

  43. Kosaka Y, Xie S-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature. 2013;501:403–7.

    Article  CAS  Google Scholar 

  44. Kosaka Y, Xie S-P. Tropical Pacific influence on the recent hiatus in surface global warming. US CLIVAR Variations. 2015;13(3):10–5.

    Google Scholar 

  45. Kosaka Y, Xie S-P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat Geosci. 2016;9:669–73.

    Article  CAS  Google Scholar 

  46. Kucharski F, Ikram F, Molteni F, et al. Atlantic forcing of Pacific decadal variability. Clim Dynam. 2015;46:2337–51.

    Article  Google Scholar 

  47. Kuntz LB, Schrag DP. Impact of Asian aerosol forcing on tropical Pacific circulation, and the relationship to global temperature trends. J Geophys Res Atmos. 2016;121:14403–13.

    Article  Google Scholar 

  48. Lau N-C. 2015 Bernhard Haurwitz memorial lecture: model diagnosis of el Niño teleconnections to the global atmosphere–ocean system. Bull Am Meteorol Soc. 2016;97:981–8.

    Article  Google Scholar 

  49. Lee S-K, Park W, Baringer MO, et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat Geosci. 2015;8:445–9.

    Article  CAS  Google Scholar 

  50. Levitus S, Antonov JI, Boyer TP, et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett. 2012;39:L10603.

    Article  Google Scholar 

  51. Lewandowsky S, Risbey JS, Oreskes N. On the definition and identifiability of the alleged “hiatus” in global warming. Sci Rep. 2015;5:16784.

    Article  CAS  Google Scholar 

  52. Li X, Xie S-P, Gille ST, Yoo C. Atlantic-induced pan-tropical climate change over the past three decades. Nature Clim Change. 2016;6:275–9.

    Article  Google Scholar 

  53. Lin I-I, Pun I-F, Lien C-C. “Category-6” supertyphoon Haiyan in global warming hiatus: contribution from subsurface ocean warming. Geophys Res Lett. 2014;41:8547–53.

    Article  Google Scholar 

  54. Liu W, Xie S-P, Lu J. Tracking ocean heat uptake during the surface warming hiatus. Nature Comm. 2016;7:10926.

    Article  CAS  Google Scholar 

  55. Loeb NG, Lyman JM, Johnson GC, et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci. 2012;5:110–3.

    Article  CAS  Google Scholar 

  56. Luo J-J, Sasaki W, Masumoto Y. Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci U S A. 2012;109:18701–6.

    Article  CAS  Google Scholar 

  57. Lyman JM, Johnson GC. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J Clim. 2014;27:1945–57.

    Article  Google Scholar 

  58. Maher N, Sen Gupta A, England MH. Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys Res Lett. 2014;41:5978–86.

    Article  Google Scholar 

  59. Maher N, McGregor S, England MH, Sen Gupta A. Effects of volcanism on tropical variability. Geophys Res Lett. 2015;42:6024–33.

    Article  Google Scholar 

  60. Manabe S, Stouffer RJ. Role of ocean in global warming. J Meteorol Soc Japan. 2007;85B:385–403.

    Article  Google Scholar 

  61. Marotzke J, Forster PM. Forcing, feedback and internal variability in global temperature trends. Nature. 2015;517:565–70.

    Article  CAS  Google Scholar 

  62. McGregor S, Timmermann A, Stuecker MF, et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Clim Change. 2014;4:888–92.

    Article  Google Scholar 

  63. Meehl GA, Teng H. Regional precipitation simulations for the mid-1970s shift and early-2000s hiatus. Geophys Res Lett. 2014;41:7658–65.

    Article  Google Scholar 

  64. Meehl GA, Hu A, Santer BD. The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Clim. 2009;22:780–92.

    Article  Google Scholar 

  65. Meehl GA, Arblaster JM, Fasullo JT, Hu AX, Trenberth KE. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim Change. 2011;1:360–4.

    Article  Google Scholar 

  66. Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim. 2013;26:7298–310.

    Article  Google Scholar 

  67. Meehl GA, Teng H, Arblaster JM. Climate model simulations of the observed early-2000s hiatus of global warming. Nature Clim Change. 2014;4:898–902. doi:10.1038/NCLIMATE2357.

    Article  Google Scholar 

  68. Meehl GA, Hu A, Teng H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nature Comm. 2016a;7:11718. doi:10.1038/NCOMMS11718.

    Article  CAS  Google Scholar 

  69. Meehl GA, Hu A, Santer BD, Xie S-P. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nature Clim Change. 2016b;6:1005–8. doi:10.1038/nclimate3107.

    Article  Google Scholar 

  70. Mei W, Xie S-P, Primeau F, McWilliams JF, Pasquero C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science Adv. 2015;1:e1500014.

    Article  Google Scholar 

  71. Merrifield MA. A shift in western tropical Pacific sea level trends during the 1990s. J Clim. 2011;24:4126–38.

    Article  Google Scholar 

  72. Middlemas EA, Clement AC. Spatial patterns and frequency of unforced decadal-scale changes in global mean surface temperature in climate models. J Clim. 2016;29:6245–57.

    Article  Google Scholar 

  73. Mochizuki T, Kimoto M, Watanabe M, Chikamoto Y, Ishii M. Interbasin effects of the Indian Ocean on Pacific decadal climate change. Geophys Res Lett. 2016;43:7168–75.

    Article  Google Scholar 

  74. Morice CP, Kennedy JJ, Rayner NA, Jones PD. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res. 2012;117:D08101.

    Article  Google Scholar 

  75. Murphy DM, Solomon S, Portmann RW, et al. An observationally based energy balance for the Earth since 1950. J Geophys Res. 2009;114:D17107.

    Article  Google Scholar 

  76. National Academies of Sciences, Engineering, and Medicine. Frontiers in decadal climate variability: proceedings of a workshop. Washington, DC: National Academies Press; 2016. doi:10.17226/23552.

    Google Scholar 

  77. Neelin JD, Battisti DS, Hirst AC, et al. ENSO theory. J Geophys Res Oceans. 1998;103:14261–90.

    Article  Google Scholar 

  78. Newman M, Alexander MA, Ault TR, et al. The Pacific decadal Oscillation, revisited. J Clim. 2016;29:4399–427.

    Article  Google Scholar 

  79. Okumura YM. Origins of tropical Pacific decadal variability: role of stochastic atmospheric forcing from the South Pacific. J Clim. 2013;26:9791–6.

    Article  Google Scholar 

  80. Outten S, Thorne P, Bethke I, Seland Ø. Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30-member Earth system model ensembles. J Geophys Res Atmos. 2015;120:8575–96.

    Article  Google Scholar 

  81. Palmer MD, McNeall DJ. Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ Res Lett. 2014;9:034016.

    Article  Google Scholar 

  82. Palmer MD, Haines K, Tett SFB, Ansell TJ. Isolating the signal of ocean global warming. Geophys Res Lett. 2007;34:L23610.

    Article  Google Scholar 

  83. Power S, Casey T, Folland C, Colman A, Mehta V. Inter-decadal modulation of the impact of ENSO on Australia. Clim Dynam. 1999;15:319–24.

    Article  Google Scholar 

  84. Risbey JS, Lewandowsky S, Langlais C, et al. Well-estimated global surface warming in climate projections selected for ENSO phase. Nature Clim Change. 2014;4:835–40.

    Article  Google Scholar 

  85. Riser SC, Freeland HJ, Roemmich D, et al. Fifteen years of ocean observations with the global Argo array. Nature Clim Change. 2016;6:145–53.

    Article  Google Scholar 

  86. Roemmich D, Church J, Gilson J, et al. Unabated planetary warming and its ocean structure since 2006. Nature Clim Change. 2015;5:240–5.

    Article  Google Scholar 

  87. Santer BD, Bonfils C, Painter JF, et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci. 2014;7:185–9.

    Article  CAS  Google Scholar 

  88. Santer BD, Solomon S, Bonfils C, et al. Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys Res Lett. 2015;42:500–9. doi:10.1002/2014GL062366.

    Article  Google Scholar 

  89. Schmidt GA, Shindell DT, Tsigaridis K. Reconciling warming trends. Nat Geosci. 2014;7:158–60.

    Article  CAS  Google Scholar 

  90. Seneviratne SI, Donat M, Mueller B, Alexander LV. No pause in the increase of hot temperature extremes. Nature Clim Change. 2014;4:161–3.

    Article  Google Scholar 

  91. Smith DM, Booth BBB, Dunstone NJ, Eade R, Hermanson L, Jones GS, Scaife AA, Sheen KL, Thompson V. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nature Clim Change. 2016;6:936–40. doi:10.1038/NCLIMATE3058.

    Article  CAS  Google Scholar 

  92. Stocker TF, Qin D, Plattner G-K, et al. Technical summary. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 33–115. doi:10.1017/CBO9781107415324.005.

    Google Scholar 

  93. Takahashi C, Watanabe M. Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Clim Change. 2016;6:768–72.

    Article  Google Scholar 

  94. Thoma M, Greatbatch RJ, Kadow C, Gerdes R. Decadal hindcasts initialized using observed surface wind stress: evaluation and prediction out to 2024. Geophys Res Lett. 2015;42:6454–61.

    Article  Google Scholar 

  95. Trenberth KE, Fasullo JT, Balmaseda MA. Earth’s energy imbalance. J Clim. 2014;27:3129–44.

    Article  Google Scholar 

  96. Wang C-Y, Xie S-P, Kosaka Y, Liu Q, Zheng X-T. Global influence of tropical Pacific variability with implications for global warming slowdown. J Clim. 2017;30:2679–95.

  97. Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M. Contribution of natural decadal variability to global warming acceleration and hiatus. Nature Clim Change. 2014;4:893–7.

    Article  Google Scholar 

  98. Willis JK, Roemmich D, Cornuelle B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res. 2004;109:C12036.

    Article  Google Scholar 

  99. Xie P, Arkin PA. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc. 1997;78:2539–58.

    Article  Google Scholar 

  100. Xie S-P, Lu B, Xiang B. Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat Geosci. 2013;6:828–32.

    Article  CAS  Google Scholar 

  101. Xie S-P, Kosaka Y, Okumura YM. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus. Nat Geosci. 2016;9:29–33.

    Article  CAS  Google Scholar 

  102. Yan X-H, Boyer T, Trenberth K, Karl TR, Xie S-P, Nieves V, Tung K-K, Roemmich D. The global warming hiatus: slowdown or redistribution? Earth's Future. 2016;4:472–82.

    Article  Google Scholar 

  103. Zhang Y, Wallace JM, Battisti DS. ENSO-like interdecadal variability: 1900-93. J Clim. 1997;10:1004–20.

    Article  Google Scholar 

  104. Zhou C, Zelinka MD, Klein SA. Impact of decadal cloud variations on the Earth’s energy budget. Nat Geosci. 2016; doi:10.1038/NGEO2828.

    Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. G. Meehl and an anonymous reviewer for useful comments. This work was supported by the National Key Research and Development Program of China (2016YFA0601804), the U.S. National Science Foundation (1637450), Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (A) JP15H05466), the Japanese Ministry of Education, Culture, Sports, Science and Technology (the Arctic Challenge for Sustainability Project), the Japanese Ministry of Environment (the Environment Research and Technology Development Fund 2-1503), and the Japan Science and Technology Agency (Belmont Forum CRA “InterDec”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Ping Xie.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Decadal Predictability and Prediction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, SP., Kosaka, Y. What Caused the Global Surface Warming Hiatus of 1998–2013?. Curr Clim Change Rep 3, 128–140 (2017). https://doi.org/10.1007/s40641-017-0063-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-017-0063-0

Keywords

Navigation