Skip to main content
Log in

A prediction of dust mite populations in different categories of housing quality in Auckland, New Zealand

  • original article
  • Published:
Allergo Journal International Aims and scope Submit manuscript

Summary

Background

New Zealand has one of the highest asthma rates in the world, frequently linked to the quality of housing. A confirmed causal factor for asthma is the dust mite allergen, with environmental factors such as temperature and relative humidity (RH) linked to the proliferation of dust mites. Whilst significant research has been undertaken into the habitat and ecology of dust mites, little research has been conducted comparing different categories of housing quality in relation to dust mites.

Methods

A dust mite population prediction algorithm (POPMITE) was used to undertake a comparative analysis of the potential of three housing types (old, newly constructed and newly constructed green certified) to harbour dust mites.

Results

The results determined no statistically significant difference between the quality categories, and the hypothesis that newly constructed, more insulated dwellings would have lower predicted dust mite populations was rejected. Instead, the newly constructed dwellings exhibited a wide range of predicted dust mite populations indicating a potential sensitivity to occupant behaviour in new housing stock which was not experienced in the older vintage dwellings.

Conclusions

Occupant behaviour is suggested as an influencing factor with a call for policy makers to consider real-time feedback loops to dwelling occupants, in conjunction with structural interventions, to improve the health of the interior environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Human Participants Ethics Committee approval was granted prior to installation of the data loggers.

Abbreviations

6HS:

6‑Homestar

AH:

Absolute humidity

CEH:

Critical equilibrium humidity

DP:

Dermatophagoides pteronyssinus

IEA:

International Energy Agency

LPWAN:

Low-powered wider area network connection

MOTAT:

Museum of Transport and Technology

NEW:

New building stock

NZBC:

New Zealand Building Code

OLD:

Old building stock

POPMITE:

A dust mite population prediction algorithm

RH:

Relative humidity

WOF:

Warrant of fitness

References

  1. Allen JG, MacNaughton P, Laurent JGC, Flanigan SS, Eitland ES, Spengler JD. Green buildings and health. Curr Envir Health Rpt. 2015;2:250–8.

    Article  Google Scholar 

  2. Koistinen K, Kotzias D, Kephalopoulos S, Schlitt C, Carrer P, Jantunen M, et al. The INDEX project: executive summary of a European Union project on indoor air pollutants. Allergy. 2008;63:810–9.

    Article  CAS  Google Scholar 

  3. Howden-Chapman P, Matheson A, Crane J, Viggers H, Cunningham M, Blakely T, et al. Effect of insulating existing houses on health inequality: cluster randomised study in the community. BMJ. 2007;334:460. https://doi.org/10.1136/bmj.39070.573032.80.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Telfar-Barnard L, Bennett J, Robinson A, Hailes A, Ombler J, Howden-Chapman P. Evidence base for a housing warrant of fitness. SAGE Open Med. 2019; https://doi.org/10.1177/2050312119843028.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ingham T, Keall M, Jones B, Aldridge DR, Dowell A, Davies C, et al. Damp mouldy housing and early childhood hospital admissions for acute respiratory infection: a case control study. Thorax. 2019;74:849–57.

    Article  Google Scholar 

  6. Keall MD, Crane J, Baker MG, Wickens K, Howden-Chapman P, Cunningham M. A measure for quantifying the impact of housing quality on respiratory health: a cross-sectional study. Environ Health. 2012;11:33. https://doi.org/10.1186/1476-069X-11-33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. HQSC. Asthma. 2016. https://www.hqsc.govt.nz/our-programmes/health-quality-evaluation/projects/atlas-of-healthcare-variation/asthma/. Accessed: 15 May 2019.

  8. World Health Organization. WHO housing and health guidelines. Geneva: WHO; 2018.

    Google Scholar 

  9. Milner J, Wilkinson P. Effects of home energy efficiency and heating interventions on cold-related health. Epidemiology. 2017;28(1):86–9. https://doi.org/10.1097/EDE.0000000000000570.

    Article  PubMed  Google Scholar 

  10. Preval N, Keall M, Telfar-Barnard L, Grimes A, Howden-Chapman P. Impact of improved insulation and heating on mortality risk of older cohort members with prior cardiovascular or respiratory hospitalisations. BMJ Open. 2017;7:e18079. https://doi.org/10.1136/bmjopen-2017-018079.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rangiwhetu L, Pierse N, Viggers H, Howden-Chapman P. Cold New Zealand council housing getting an upgrade. Policy Q. 2018;14:65.

    Article  Google Scholar 

  12. Telfar-Barnard L, Bennett J, Howden-Chapman P, Jacobs D, Ormandy D, Cutler-Welsh M, et al. Measuring the effect of housing quality interventions: the case of the New Zealand “rental warrant of fitness”. Int J Environ Res Public Health. 2017;14:1352.

    Article  Google Scholar 

  13. New Zealand Green Building Council. HomeFit. 2019. https://www.nzgbc.org.nz/homefit. Accessed: 2 November 2019.

  14. Ade R, Rehm M. Home is where the health is: what indoor environment quality delivers a “healthy” home? Pac Rim Prop Res J. 2019; https://doi.org/10.1080/14445921.2019.1707949.

    Article  Google Scholar 

  15. International Energy Agency. Energy policies of IEA countries: New Zealand 2017 review. 2017. https://webstore.iea.org/energy-policies-of-iea-countries-new-zealand-2017-review. Accessed: 20 June 2019.

  16. Kāinga Ora. Investor update. 2019. https://kaingaora.govt.nz/assets/Investors-Centre/Investor-update-October-2019.pdf. Accessed: 2 November 2019.

  17. Panuku. Panuku adopts homestar rating to deliver healthier, more energy efficient homes for Auckland. 2017. https://www.panuku.co.nz/panuku-adopts-homestar-rating. Accessed: 2 November 2019.

  18. Richardson G, Eick S, Jones R. How is the indoor environment related to asthma? Literature review. J Adv Nurs. 2005;52:328–39.

    Article  Google Scholar 

  19. Miller JD. The role of dust mites in allergy. Clin Rev Allergy Immunol. 2019;57(3):312–29. https://doi.org/10.1007/s12016-018-8693-0.

    Article  CAS  PubMed  Google Scholar 

  20. Reithofer M, Jahn-Schmid B. Allergens with protease activity from house dust mites. Int J Mol Sci. 2017;18:1368.

    Article  Google Scholar 

  21. Grafetstätter C, Prossegger J, Braunschmid H, Sanovic R, Hahne P, Pichler C, et al. No concentration decrease of house dust mite allergens with rising altitude in alpine regions. Allergy Asthma Immunol Res. 2016;8:312–8.

    Article  Google Scholar 

  22. Park K, Lee J, Lee J, Lee S, Sim D, Shin J, et al. Sensitization to various minor house dust mite allergens is greater in patients with atopic dermatitis than in those with respiratory allergic disease. Clin Exp Allergy. 2018;48:1050–8.

    Article  CAS  Google Scholar 

  23. Calderón MA, Linneberg A, Kleine-Tebbe J, De Blay F, Hernandez Fernandez de Rojas D, Virchow JC, et al. Respiratory allergy caused by house dust mites: what do we really know? J Allergy Clin Immunol. 2015;136:38–48.

    Article  Google Scholar 

  24. Wickens K, Siebers R, Ellis I, Lewis S, Sawyer G, Tohill S, et al. Determinants of house dust mite allergen in homes in Wellington, New Zealand. Clin Exp Allergy. 1997;27:1077–85.

    Article  CAS  Google Scholar 

  25. Arlian LG. Water balance and humidity requirements of house dust mites. Exp Appl Acarol. 1992;16(1–2):15–35.

    Article  CAS  Google Scholar 

  26. Cunningham M. Direct measurements of temperature and humidity in dust mite microhabitats. Clin Exp Allergy. 1998;28:1104–12.

    Article  CAS  Google Scholar 

  27. Koekkoek H, van Bronswijk J. Temperature requirements of a house-dust mite dermatophagoides pteronyssinus compared with the climate in different habitats of houses. Entomol Exper Applic. 1972;15:438–42.

    Article  Google Scholar 

  28. Korsgaard J, Hallas TE. Tarsonemid mites in Danish house dust. Allergy. 1979;34:225–32.

    Article  CAS  Google Scholar 

  29. Korsgaard J. Epidemiology of house-dust mites. Allergy. 1998;53:36–40.

    Article  CAS  Google Scholar 

  30. Korsgaard J, Iversen M. Epidemiology of house dust mite allergy. Allergy. 1991;46:14–8.

    Article  Google Scholar 

  31. Lowe R. Psychrometric control of dust mites in UK housing. Build Serv Eng Res Technol. 2000;21:274–6.

    Article  Google Scholar 

  32. Crowther D, Horwood J, Baker N, Thomson D, Pretlove S, Ridley I, Oreszczyn T. House dust mites and the built environment: a literature review. London: University College; 2000.

    Google Scholar 

  33. Acevedo N, Zakzuk J, Caraballo L. House dust mite allergy under changing environments. Allergy Asthma Immunol Res. 2019;11:450–69.

    Article  CAS  Google Scholar 

  34. van Bronswijk JE. House dust biology for allergists, acarologists and mycologists. Zeist: NIB Publishers; 1981.

    Google Scholar 

  35. Crowther D, Wilkinson T, Biddulph P, Oreszczyn T, Pretlove S, Ridley I. A simple model for predicting the effect of hygrothermal conditions on populations of house dust mite dermatophagoides pteronyssinus (acari: pyroglyphidae). Exp Appl Acarol. 2006;39:127–48.

    Article  Google Scholar 

  36. Cunningham MJ. Modelling of some dwelling internal microclimates. Build Environ. 1999;34:523–36.

    Article  Google Scholar 

  37. Biddulph P, Crowther D, Leung B, Wilkinson T, Hart B, Oreszczyn T, et al. Predicting the population dynamics of the house dust mite dermatophagoides pteronyssinus (acari: pyroglyphidae) in response to a constant hygrothermal environment using a model of the mite life cycle. Exp Appl Acarol. 2007;41:61–86.

    Article  Google Scholar 

  38. Rosemeier K. Healthy and affordable housing in new zealand: the role of ventilation. Auckland: University of Auckland; 2014. Unpublished doctoral thesis.

    Google Scholar 

  39. Didovich N. Here’s what you need to know to beat dust mites. 2018. https://www.stuff.co.nz/life-style/homed/how-to/108696792/heres-what-you-need-to-know-to-beat-dust-mites. Accessed: 2 November 2019.

Download references

Acknowledgements

This study was supported by funding from the Building Research Levy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochelle Ade.

Ethics declarations

Conflict of interest

R. Ade is a Homestar Assessor and has worked as a Homestar Assessor for the Building Excellence Group. R. Ade also has an interest in Tether. M. Rehm declares that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ade, R., Rehm, M. A prediction of dust mite populations in different categories of housing quality in Auckland, New Zealand. Allergo J Int 29, 187–198 (2020). https://doi.org/10.1007/s40629-020-00130-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40629-020-00130-w

Keywords

Navigation