Skip to main content

Advertisement

Log in

Transcriptomics of plant–virus interactions: a review

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Posing as one of the major threats for a wide range of plant species, viruses are responsible for huge losses in crop production around the world. The design of new efficient molecular strategies aiming plant resistance requires a holistic view of the complex mechanisms underlying the plant–virus interactions, as well as the discovery of all virus-associated functional components involved in disease. Most of plant viruses present RNA genomes, which aspects of structural diversity and function are frequently difficult to be described using classical molecular biology approaches. As a promising alternative, the advancing field of transcriptomics has shaded light on the understanding of a plethora of plant–virus interactions, in model and crop plants. The advent of RNA sequencing (RNA-seq) and its several variants, such as sRNA-seq and Degradome-seq, has brought the study of plant–virus interactions in a new age. Previously unknown players acting during virus infections are now structurally and functionally described. In this review, we focus on the advances of plant–virus interactions study promoted by the expanding field of transcriptomics. We present an overview of state-of-art of the plant–virus interactions study, regarding important aspects of plant physiology and virology, following by a succinct description of the main transcriptomic approaches used in this field. A detailed description of the use of transcriptomic approaches for some of main plant virus genres during host-interactions is also presented. Finally, we bring concluding remarks discussing the importance of transcriptomics in the study of plant viral diseases, and the future prospects of new approaches in transcriptomics with potential of use in plant–virus interaction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelkefi H, Sugliani M, Ke H, Harchouni S, Soubigou-Taconnat L, Citerne S, Mouille G, Fakhfakh H, Robaglia C, Field B (2018) Guanosine tetraphosphate modulates salicylic acid signalling and the resistance of Arabidopsis thaliana to Turnip mosaic virus. Mol Plant Pathol 19(3):634–646

    Article  CAS  PubMed  Google Scholar 

  • Adams MJ, Zerbini FM, French R, Rabenstein F, Stenger DC, Valkonen JPT (2011) Family Potyviridae. In: Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy. Ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego

    Google Scholar 

  • Allan AC, Lapidot M, Culver JN, Fluhr R (2001) An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol 126(1):97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjanappa RB, Mehta D, Okoniewski MJ, Szabelska-Berȩsewicz A, Gruissem W, Vanderschuren H (2018) Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response. Mol Plant Pathol 19(2):476–489

    Article  CAS  PubMed  Google Scholar 

  • Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Analysis of arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barba M, Czosnek H, Hadidi A (2014) Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6:106–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertran A, Ciuffo M, Margaria P, Rosa C, Oliveira Resende R, Turina M (2016) Host-specific accumulation and temperature effects on the generation of dimeric viral RNA species derived from the S-RNA of members of the Tospovirus genus. J Gen Virol 97:3051–3062

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Chakraborty S (2018) Chloroplast: the Trojan horse in plant–virus interaction: chloroplast-virus interaction. Mol Plant Pathol 19:504–518

    Article  PubMed  Google Scholar 

  • Brommonschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 13:1130–1138

    Article  CAS  PubMed  Google Scholar 

  • Calil IP, Fontes EPB (2017) Plant immunity against viruses: antiviral immune receptors in focus. Ann Bot 119:711–723

    CAS  PubMed  Google Scholar 

  • Catoni M, Miozzi L, Fiorilli V, Lanfranco L, Accotto GP (2009) Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by Tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol Plant Microbe Interact 22:1504–1513

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu W, He X, Liu T, Zhang B (2013) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 8(11):e80816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Li F, Liu D, Jiang C, Cui L, Shen L, Liu G, Yang A (2015) Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol 99(11):4757–4770

    Article  CAS  Google Scholar 

  • Chen H, Arsovski AA, Yu K, Wang A (2016a) Genome-wide investigation using sRNA-seq, degradome-seq and transcriptome-seq reveals regulatory networks of microRNAs and their target genes in soybean during soybean mosaic virus infection. PLoS ONE 11:e0150582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang H, Feng M, Zuo D, Hu Y, Jiang T (2016b) Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by Strawberry vein banding virus (SVBV). Virol J 13:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Fei C, Zhu L, Xu Z, Zou W, Yang T, Lin H, Xi D (2017a) RNA-seq approach to analysis of gene expression profiles in dark green islands and light green tissues of Cucumber mosaic virus infected Nicotiana tabacum. PLoS ONE 12(5):e0175391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Li F, Liu D, Jiang C, Cui L, Shen L, Liu G, Yang A (2017b) Dynamic expression analysis of early response genes induced by potato virus Y in PVY-resistant Nicotiana tabacum. Plant Cell Rep 36(2):297–311

    Article  CAS  PubMed  Google Scholar 

  • Cho WK, Lian S, Kim S-M, Seo BY, Jung JK, Kim K-H, Wong S-M (2015) Time-course RNA-seq analysis reveals transcriptional changes in rice plants triggered by rice stripe virus infection. PLOS ONE 10(8):e0136736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou WC, Lin SS, Yeh SD, Li SL, Peng YC, Fan YH, Chen TC (2017) Characterization of the genome of a phylogenetically distinct tospovirus and its interactions with the local lesion-induced host Chenopodium quinoa by whole-transcriptome analyses. PLoS ONE 12:e0182425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collum TD, Padmanabhan MS, Hsieh YC, Culver JN (2016) Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1524390113

    Article  PubMed  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 26(17):13

    Article  CAS  Google Scholar 

  • Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16(9):537–552

    Article  CAS  PubMed  Google Scholar 

  • Ding S-W (2010) RNA-based antiviral immunity. Nat Rev Immunol 10(9):632–644

    Article  CAS  PubMed  Google Scholar 

  • Fregene M, Matsumura H, Akano A, Dixon A, Terauchi R (2004) Serial analysis of gene expression (SAGE) of host–plant resistance to the cassava mosaic disease (CMD). Plant Mol Biol 56(4):563–571

    Article  CAS  PubMed  Google Scholar 

  • Geng C, Zhu TS, Liu JL, Li XD, Tian YP, Gao R (2014) First report of Tobacco vein banding mosaic virus in potato in China. J Plant Pathol 96:113–131

    Google Scholar 

  • Geng C, Wang HY, Liu J, Yan ZY, Tian YP, Yuan XF, Gao R, Li XD (2017) Transcriptomic changes in Nicotiana benthamiana plants inoculated with the wild-type or an attenuated mutant of Tobacco vein banding mosaic virus. Mol Plant Pathol 18:1175–1188

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani A, Izadpanah K, Dietzgen RG (2018a) Changes in maize transcriptome in response to maize Iranian mosaic virus infection. PLoS ONE 13:e0194592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbani A, Izadpanah K, Dietzgen RG (2018b) Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus. Arch Virol 163:767–770

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani A, Izadpanah K, Dietzgen RG (2018c) Gene expression and population polymorphism of maize Iranian mosaic virus in Zea mays, and intracellular localization and interactions of viral N, P, and M proteins in Nicotiana benthamiana. Virus Genes 54:290–296

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Aix C, Pascual L, Cañizares J, Sánchez-Pina MA, Aranda MA (2016) Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations. BMC Genom 17:429

    Article  CAS  Google Scholar 

  • Gongora-Castillo E, Ibarra-Laclette E, Trejo-Saavedra DL, Rivera-Bustamante RF (2012) Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum). Virol J 9:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    Article  CAS  Google Scholar 

  • Gouveia BC, Calil IP, Machado JP, Santos AA, Fontes EP (2017) Immune receptors and co-receptors in antiviral innate immunity in plants. Front Microbiol 7:2139

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyer A, Hamlin L, Crosslin JM, Buchanan A, Chang JH (2015) RNA-seq analysis of resistant and susceptible potato varieties during the early stages of potato virus Y infection. BMC Genom 16:472

    Article  CAS  Google Scholar 

  • Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberté JF (2013) 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Front Microbiol 4:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo DP, Guo YP, Zhao JP, Liu H, Peng Y, Wang QM, Chen JS, Rao GZ (2005a) Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Sci 168:57–63

    Article  CAS  Google Scholar 

  • Guo YP, Guo DP, Peng Y, Chen JS (2005b) Photosynthetic responses of radish (Raphanus sativus var. longipinnatus) plants to infection by turnip mosaic virus. Photosynthetica 43:457–462

    Article  CAS  Google Scholar 

  • Hashimoto M, Neriya Y, Yamaji Y, Namba S (2016) Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front Microbiol 26(7):1695

    Google Scholar 

  • Hasiów-Jaroszewska B, Borodynko N, Jackowiak P, Figlerowicz M, Pospieszny H (2011) Single mutation converts mild pathotype of the Pepino mosaic virus into necrotic one. Virus Res 159(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Heinlein M (2015) Plant virus replication and movement. Virology 479–480:657–671

    Article  CAS  PubMed  Google Scholar 

  • Hillung J, Cuevas JM, Elena SF (2012) Transcript profiling of different Arabidopsis thaliana ecotypes in response to Tobacco etch potyvirus infection. Front Microbiol 3:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata H, Lu X, Yamaji Y, Kagiwada S, Ugaki M, Namba S (2003) A single silent substitution in the genome of Apple stem grooving virus causes symptom attenuation. J Gen Virol 84(9):2579–2583

    Article  CAS  PubMed  Google Scholar 

  • Hodgson RAJ, Beachy RN, Pakrasi HB (1989) Selective inhibition of photosystem II in spinach by tobacco mosaic virus: an effect of the viral coat protein. FEBS Lett 245:267–270

    Article  CAS  PubMed  Google Scholar 

  • Hrdlickova R, Toloue M, Tian B (2017) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA

  • Ivanov KI, Eskelin K, Bašić M, De S, Lõhmus A, Varjosalo M, Mäkinen K (2016) Molecular insights into the function of the viral RNA silencing suppressor HCPro. Plant J 85:30–45

    Article  CAS  PubMed  Google Scholar 

  • Izadpanah K, Ahmadi AA, Parvin S, Jafari SA (1983) Transmission, particle size and additional hosts of the rhabdovirus causing maize mosaic in Shiraz, Iran. J Phytopathol 107:283–288

    Article  Google Scholar 

  • Jin X, Jiang Z, Zhang K et al (2018) Three-dimensional analysis of chloroplast structures associated with virus infection. Plant Physiol 176:282–294

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176

    Article  CAS  Google Scholar 

  • Kagiwada S, Yamaji Y, Komatsu K, Takahashi S, Mori T, Hirata H, Suzuki M, Ugaki M, Namba S (2005) A single amino acid residue of RNA-dependent RNA polymerase in the Potato virus X genome determines the symptoms in Nicotiana plants. Virus Res 110(1–2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Kamitani M, Nagano AJ, Honjo MN, Kudoh H (2016) RNA-Seq reveals virus–virus and virus–plant interactions in nature. FEMS Microbiol Ecol 92(11):fiw176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (Eds.) Virus taxonomy. Ninth Report of the International Comittee on Taxonomy of Viruses. Elsevier Inc. 2011

  • Kong J, Wei M, Li G, Lei R, Qiu Y, Wang C, Li ZH, Zhu S (2018) The Cucumber mosaic virus movement protein suppresses PAMP-triggered immune responses in Arabidopsis and tobacco. Biochem Biophys Res Commun 498(3):395–401

    Article  CAS  PubMed  Google Scholar 

  • Kontra L, Csorba T, Tavazza M, Lucioli A, Tavazza R, Moxon S, Tisza V, Medzihradszky A, Turina M, Burgyán J (2016) Distinct effects of p19 RNA silencing suppressor on small RNA mediated pathways in plants. PLoS Pathog 12(10):e1005935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupeevicz VF (1947) The physiology of the diseased plant in relation to the general questions of parasitism. USSR Academy of Sciences, Leningrad

    Google Scholar 

  • Kushwaha N, Sahu PP, Prasad M, Chakraborty S (2015) Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol 99(11):4757–4770

    Article  CAS  PubMed  Google Scholar 

  • Laliberté JF, Sanfacon H (2010) Cellular remodeling during plant virus infection. Annu Rev Phytopathol 48:69–91

    Article  CAS  PubMed  Google Scholar 

  • Leibman D, Prakash S, Wolf D, Zelcer A, Anfoka G, Haviv S, Brumin M, Gaba V, Arazi T, Lapidot M, Gal-On A (2015) Immunity to Tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA. Arch Virol 160:2727–2739

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cui H, Cui X, Wang A (2016) The altered photosynthetic machinery during compatible virus infection. Curr Opin Virol 17:19–24

    Article  CAS  PubMed  Google Scholar 

  • Li X, An M, Xia Z, Bai X, Wu Y (2017) Transcriptome analysis of watermelon (Citrullus lanatus) fruits in response to Cucumber green mottle mosaic virus (CGMMV) infection. Sci Rep 7:16747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Wu G, Li M, Ma M, Du J, Sun M, Sun X, Qing L (2018) Transcriptome analysis of Nicotiana benthamiana infected by Tobacco curly shoot virus. Virol J 15:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libault M, Pingault L, Zogli P, Schiefelbein J (2017) Plant systems biology at the single-cell level. Trends Plant Sci 22:949–960

    Article  CAS  PubMed  Google Scholar 

  • Lin PC, Hu WC, Lee SC, Chen YL, Lee CY, Chen YR, Liu LY, Chen PY, Lin SS, Chang YC (2015) Application of an integrated omics approach for identifying host proteins that interact with Odontoglossum ringspot virus capsid protein. Mol Plant Microbe Interact 28:711–726

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang J, Bi H, Zhang P (2014) Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. J Integr Plant Biol 56:122–132

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Du ZX, Kong J, Chen LN, Qiu YH, Li GF, Meng XH, Zhu SF (2012) Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development. PLoS ONE 7(8):e43447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucioli A, Perla C, Berardi A, Gatti F, Spanò L, Tavazza M (2016) Transcriptomics of tomato plants infected with TYLCSV or expressing the central TYLCSV Rep protein domain uncover changes impacting pathogen response and senescence. Plant Physiol Biochem 103:61–70

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhou T, Hong Y et al (2008) Decreased level of ferredoxin I in Tobacco mosaic virus-infected tobacco is associated with development of the mosaic symptom. Physiol Mol Plant Pathol 72:39–45

    Article  CAS  Google Scholar 

  • Manacorda CA, Mansilla C, Debat HJ, Zavallo D, Sánchez F, Ponz F, Asurmendi S (2013) Salicylic acid determines differential senescence produced by two Turnip mosaic virus strains involving reactive oxygen species and early transcriptomic changes. Mol Plant Microbe Interact 26(12):1486–1498

    Article  CAS  PubMed  Google Scholar 

  • Marone D, Russo MA, Laido G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miozzi L, Napoli C, Sardo L, Accotto GP (2014) Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS ONE 9(2):e89951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter N, Koundal V, Williams S, Pappu H (2013) Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS ONE 8:e76276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel JB, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671–683

    Article  CAS  PubMed  Google Scholar 

  • Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134

    Article  CAS  PubMed  Google Scholar 

  • Moustafa K, Cross JM (2016) Genetic approaches to study plant responses to environmental stresses: an overview. Biology 17:5

    Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Plant innate immunity: an updated insight into defense mechanism. J Biosci 38(2):433–449

    Article  CAS  PubMed  Google Scholar 

  • Nachappa P, Margolies DC, Nechols JR, Whitfield AE, Rotenberg D (2013) Tomato spotted wilt virus benefits a non-vector arthropod, Tetranychus urticae, by modulating different plant responses in tomato. PLoS ONE 8(9):e75909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicaise V, Candresse T (2017) Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity. Mol Plant Pathol 18(6):878–886

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Sun Y, Chen Z et al (2017) Using small RNA-seq data to detect siRNA duplexes induced by plant viruses. Genes 8:163

    Article  CAS  PubMed Central  Google Scholar 

  • Ozeki J, Takahashi S, Komatsu K, Kagiwada S, Yamashita K, Mori T, Hirata H, Yamaji Y, Ugaki M, Namba S (2006) A single amino acid in the RNA-dependent RNA polymerase of Plantago asiatica mosaic virus contributes to systemic necrosis. Arch Virol 151(10):2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52(4):413–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Clemente RM, Montoliu A, Vives V, Lopez-Climent MF, Gomez-Cadenas A (2015) Photosynthetic and antioxidant responses of Mexican lime (Citrus aurantifolia) plants to Citrus tristeza virus infection. Plant Pathol 64:16–24

    Article  CAS  Google Scholar 

  • Pillai S, Gopalan V, Lam AK (2017) Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas. Crit Rev Oncol Hematol 116:58–67

    Article  PubMed  Google Scholar 

  • Pineda M, Sajnani C, Barón M (2010) Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana. Photosynth Res 103(1):31–45

    Article  CAS  PubMed  Google Scholar 

  • Postnikova OA, Nemchinov LG (2012) Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol J 9:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn EM, Cormican P, Kenny EM, Hill M, Anney R, Gill M, Corvin AP, Morris DW (2013) Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 genomes data. PLoS ONE 8:e58815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh SV, Williams S, Kappagantu M, Mitter N, Pappu HR (2017) Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Res 238:13–23

    Article  CAS  PubMed  Google Scholar 

  • Reinero A, Beachy RN (1989) Reduced photosystem 11 activity and accumulation of viral coat protein in chloroplasts of leaves infected with Tobacco mosaic virus. Plant Physiol 89:6

    Article  Google Scholar 

  • Rodamilans B, León DS, Mühlberger L, Candresse T, Neumüller M, Oliveros JC, García JA, Rao ALN (2014) Transcriptomic analysis of prunus domestica undergoing hypersensitive response to plum pox virus infection. PLoS ONE 9(6):e100477

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5:307

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R (2015) Suppression subtractive hybridization versus next-generation sequencing in plant genetic engineering: challenges and perspectives. Mol Biotechnol 57(10):880–903

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Kondoh H, Sasaya T, Shimizu T, Choi IR, Omura T, Kikuchi S (2010) Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection. J Gen Virol 91:294–305

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Pantaleo V, Ishihara T et al (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasu K, Schulze-Lefert P (2000) Regulators of cell death in disease resistance. Plant Mol Biol 44:371–385

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Eamens AL, Wang M-B (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stare T, Ramšak Ž, Blejec A, Stare K, Turnšek N, Weckwerth W, Wienkoop S, Vodnik D, Gruden K (2015) Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction. BMC Genom 19(16):716

    Article  CAS  Google Scholar 

  • Sugliani M, Abdelkefi H, Ke H, Bouveret E, Robaglia C, Caffarri S, Field B (2016) An ancient bacterial signaling pathway regulates chloroplast function to influence growth and development in Arabidopsis. Plant Cell 28:661–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Fang P, Li J, Du L, Lan Y, Zhou T, Fan Y, Shen W, Zhou Z (2016) RNA-seq-based digital gene expression analysis reveals modification of host defense responses by Rice stripe virus during disease symptom development in Arabidopsis. Virol J 13:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Wang Z, Gu Q, Li H, Han W, Shi Y (2017) Transcriptome analysis of Cucumis sativus infected by Cucurbit chlorotic yellows virus. Virol J 14:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Vossen EA, Neeleman L, Bol JF (1996) The 5′ terminal sequence of alfalfa mosaic virus RNA 3 is dispensable for replication and contains a determinant for symptom formation. Virology 221(2):271–280

    Article  PubMed  Google Scholar 

  • Vozárová Z, Žilová M, Šubr Z (2015) Differentially expressed genes in healthy and plum pox virus-infected Nicotiana benthamiana plants. Acta Virol 59:389–397

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yu W, Yang Y et al (2015) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep 5:16946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yang Y, Jin L, Ling X, Liu T, Chen T, Ji Y, Yu W, Zhang B (2018) Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol 18(1):104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Zhang C, Hou X, Sanfaçon H, Wang A (2013) The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog 9(5):e1003378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitham SA, Quan S, Chang H-S et al (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–283

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek P, Obrepalska-Steplowska A (2015) Suppress to survive—implication of plant viruses in PTGS. Plant Mol Biol Rep 33:335–346

    Article  PubMed  Google Scholar 

  • Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA (2007) Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol 45:329–369

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Qi T, Li WX, Tian H, Gao H, Wang J, Ge J, Yao R, Ren C, Wang XB, Liu Y, Kang L, Ding SW, Xie D (2017) Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res 27(3):402–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LP, Yang T, Liu HW, Postman J, Li R (2018) Molecular characterization of a novel rhabdovirus infecting blackcurrant identified by high-throughput sequencing. Arch Virol 163:1363–1366

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Handa K, Palukaitis P (1994) Mapping local and systemic symptom determinants of Cucumber mosaic cucumovirus in tobacco. J Gen Virol 75(11):3185–3191

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Gao R, Wang J, Zhang GM, Li XD, Liu HT (2011) Molecular variability of Tobacco vein banding mosaic virus populations. Virus Res 158:188–198

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pei X, Zhang C, Lu Z, Wang Z, Jia S, Li W (2012) De novo foliar transcriptome of Chenopodium amaranticolor and analysis of its gene expression during virus-induced hypersensitive response. PLoS ONE 7:e45953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wu Z, Li Y, Wu J (2015) Biogenesis, function, and applications of virus-derived small RNAs in plants. Front Microbiol 6:1237

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Zhang X, Hong Y, Liu Y (2016) Chloroplast in plant–virus interaction. Front Microbiol 7:1565

    PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Li H, Sun H, Li A, Liu S, Yu R, Cui X, Zhang D, Wuriyanghan H (2018) Salicylic acid and broad spectrum of NBS-LRR family genes are involved in SMV-soybean interactions. Plant Physiol Biochem 123:132–140

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Ma L, Zhao J, Li Z, Sun F, Lu X (2013) Comparative transcriptome analysis of two rice varieties in response to rice stripe virus and small brown planthoppers during early interaction. PLoS ONE 8(12):e82126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Zhang SY, Yu NT, Zhang YL, Wang JH, Liu ZX (2014) First report of Tobacco vein banding mosaic virus infection of wild eggplant in China. J Plant Pathol 96:435

    Google Scholar 

  • Zhu C, Li X, Zheng J (2018) Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Gene 666:123–133

    Article  CAS  PubMed  Google Scholar 

  • Zorzatto C, Machado JP, Lopes KV, Nascimento KJ, Pereira WA, Brustolini OJ, Reis PA, Calil IP, Deguchi M, Sachetto-Martins G, Gouveia BC, Loriato VA, Silva MA, Silva FF, Santos AA, Chory J, Fontes EP (2015) NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 520(7549):679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo Siqueira Alves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanardo, L.G., de Souza, G.B. & Alves, M.S. Transcriptomics of plant–virus interactions: a review. Theor. Exp. Plant Physiol. 31, 103–125 (2019). https://doi.org/10.1007/s40626-019-00143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-019-00143-z

Keywords

Navigation