Long-term renal survival and undetected risk factors of IgA nephropathy in Chinese children—a retrospective 1243 cases analysis from single centre experience

Abstract

Background

The long-term renal outcome for IgA nephropathy (IgAN) in large cohorts of children remains unclear. IgAN is a progressive disease, to explore novel biomarkers is necessary for predicting the disease activity and progression of IgAN. In addition, there is a hot debate on when to treat with immunosuppression in children. We aimed to confirm the long-term renal survival, find some undetected risk factors and investigate when to treat with immunosuppression can benefit for renal outcome in Chinese children.

Methods

1243 Children with IgAN were enrolled and a follow-up of at least 1 year after a biopsy from 2000 to 2017. Long-term renal survival, undetected risk factors and the renal survival of immunosuppressive and non-immunosuppressive therapy were evaluated. The primary endpoint of the study was a combined outcome of either ≥50% reduction in estimated glomerular filtration rate (eGFR) or end-stage renal disease (ESRD) or death.

Results

The median follow-up time were 86.8 months (interquartile range 54.7–140.2 months). The 5-, 10- and 15-year renal survival rates were 95.3%, 90.3% and 84%, respectively. Cox multivariate regression and Kaplan–Meier analysis showed that hypertension, hyperuricemia, high 24 h urine protein (24 h-UP) levels, lower initial eGFR, high urine C3 levels, high retinol-binding protein (RBP) levels, segmental glomerulosclerosis (S) and tubular atrophy and interstitial fibrosis (T) were associated with renal outcome. The statistically significant predictive perfect power for renal outcome was RBP ≥ 0.7µg/ml (AUC = 0.899, sensitivity = 84.00%, specificity = 86.00%), 24 h-UP ≥ 1 g/24 h (AUC = 0.722, sensitivity = 84.20%, specificity = 52.70%), eGFR < 60 ml/min/1.73 m2 (AUC = 0.718, sensitivity = 81.30%, specificity = 39.20%) and S1 lesion (AUC = 0.703, sensitivity = 75.50%, specificity = 65.10%).Children with urinary RBP ≥ 0.7µg/ml were associated with a 2.513-fold risk than patients with urinary RBP < 0.7µg/ml (P = 0.003). Our study suggested that immunosuppressive therapy may reduce the risk of progression in IgAN children had both eGFR > 50 ml/min/1.73 m2 and proteinuria of at least 1 g/day.

Conclusions

This is the first report that the 15-year renal survival rate of children with IgAN in China was 84%. At the same time, this is the first study to reveal that urinary RBP ≥ 0.7µg/ml may indicate a poor renal outcome. In addition, this study supports immunosuppressive therapy for IgAN children had both proteinuria ≥1 g/day and initial eGFR > 50 ml/min/1.73m2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Lechner SM, Papista C, Chemouny JM, Berthelot L, Monteiro RC (2016) Role of IgA receptors in the pathogenesis of IgA nephropathy. J Nephrol 29(1):5–11. https://doi.org/10.1007/s40620-015-0246-5

    Article  PubMed  Google Scholar 

  2. 2.

    Wyatt RJ, Hogg RJ (2001) Evidence-based assessment of treatment options for children with IgA nephropathies. Pediatr Nephrol 16(2):156–167. https://doi.org/10.1007/s004670000517

    Article  PubMed  Google Scholar 

  3. 3.

    Radhakrishnan J, Cattran DC (2012) The KDIGO practice guideline on glomerulonephritis: reading between the (guide)lines—application to the individual patient. Kidney Int 82(8):840–856. https://doi.org/10.1038/ki.2012.280

    Article  PubMed  Google Scholar 

  4. 4.

    Tesar V, Troyanov S, Bellur S, Verhave JC, Cook HT, Feehally J, Roberts IS, Cattran D, Coppo R (2015) Corticosteroids in IgA nephropathy: a retrospective analysis from the VALIGA study. J Am Soc Nephrol 26(9):2248–2258. https://doi.org/10.1681/ASN.2014070697

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Mian AN, Schwartz GJ (2017) Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis 24(6):348–356. https://doi.org/10.1053/j.ackd.2017.09.011

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chi XH, Li GP, Wang QS, Qi YS, Huang K, Zhang Q, Xue YM (2017) CKD-EPI creatinine-cystatin C glomerular filtration rate estimation equation seems more suitable for Chinese patients with chronic kidney disease than other equations. BMC Nephrol 18(1):226. https://doi.org/10.1186/s12882-017-0637-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M, Liu ZH, Roberts IS, Yuzawa Y, Zhang H, Feehally J (2017) Oxford Classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group. Kidney Int 91(5):1014–1021. https://doi.org/10.1016/j.kint.2017.02.003

    Article  PubMed  Google Scholar 

  8. 8.

    Coppo R, Lofaro D, Camilla RR, Bellur S et al (2017) Risk factors for progression in children and young adults with IgA nephropathy: an analysis of 261 cases from the VALIGA European cohort. Pediatr Nephrol 32(1):139–150. https://doi.org/10.1007/s00467-016-3469-3

    Article  PubMed  Google Scholar 

  9. 9.

    Soares MF (2016) An update on pathology of IgA nephropathy. J Bras Nefrol 38(4):435–440. https://doi.org/10.5935/0101-2800.20160069

    Article  PubMed  Google Scholar 

  10. 10.

    Yata N, Nakanishi K, Shima Y, Togawa H, Obana M, Sako M, Nozu K, Tanaka R, Iijima K, Yoshikawa N (2008) Improved renal survival in Japanese children with IgA nephropathy. Pediatr Nephrol 23(6):905–912. https://doi.org/10.1007/s00467-007-0726-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Fabiano R, Araujo SA, Bambirra EA, Oliveira EA, Simoes ESA, Pinheiro S (2017) The Oxford classification predictors of chronic kidney disease in pediatric patients with IgA nephropathy. J Pediatr (Rio J) 93(4):389–397. https://doi.org/10.1016/j.jped.2016.09.003

    Article  Google Scholar 

  12. 12.

    Pozzi C (2016) Treatment of IgA nephropathy. J Nephrol 29(1):21–25. https://doi.org/10.1007/s40620-015-0248-3

    Article  PubMed  Google Scholar 

  13. 13.

    Moriyama T, Itabashi M, Takei T, Kataoka H, Sato M, Shimizu A, Iwabuchi Y, Nishida M, Uchida K, Nitta K (2015) High uric acid level is a risk factor for progression of IgA nephropathy with chronic kidney disease stage G3a. J Nephrol 28(4):451–456. https://doi.org/10.1007/s40620-014-0154-0

    Article  PubMed  Google Scholar 

  14. 14.

    Shu D, Xu F, Su Z, Zhang J, Chen C, Zhang J, Ding X, Lv Y, Lin H, Huang P (2017) Risk factors of progressive IgA nephropathy which progress to end stage renal disease within ten years: a case–control study. BMC Nephrol 18(1):11. https://doi.org/10.1186/s12882-016-0429-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Le W, Liang S, Hu Y, Deng K, Bao H, Zeng C, Liu Z (2012) Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial Transplant 27(4):1479–1485. https://doi.org/10.1093/ndt/gfr527

    Article  PubMed  Google Scholar 

  16. 16.

    Maixnerova D, Reily C, Bian Q, Neprasova M, Novak J, Tesar V (2016) Markers for the progression of IgA nephropathy. J Nephrol 29(4):535–541. https://doi.org/10.1007/s40620-016-0299-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Sobotka R, Capoun O, Kalousova M, Hanus T, Zima T, Kostirova M, Soukup V (2017) Prognostic importance of vitamins A, E and retinol-binding protein 4 in renal cell carcinoma patients. Anticancer Res 37(7):3801–3806. https://doi.org/10.21873/anticanres.11757

    Article  PubMed  Google Scholar 

  18. 18.

    An C, Akankwasa G, Liu J, Wang D, Cheng G, Zhang J, Qin X (2019) Urine markers of renal tubular injury in idiopathic membranous nephropathy: a cross sectional study. Clin Chim Acta 492:7–11. https://doi.org/10.1016/j.cca.2019.01.015

    Article  PubMed  Google Scholar 

  19. 19.

    Okada K, Funai M, Kawakami K, Kagami S, Yano I, Kuroda Y (1990) IgA nephropathy in Japanese children and adults: a comparative study of clinicopathological features. Am J Nephrol 10(3):191–197. https://doi.org/10.1159/000168080

    Article  PubMed  Google Scholar 

  20. 20.

    Mina SN, Murphy WM (1985) IgA nephropathy a comparative study of the clinicopathologic features in children and adults. Am J Clin Pathol 83(6):669–675. https://doi.org/10.1093/ajcp/83.6.669

    Article  PubMed  Google Scholar 

  21. 21.

    Ikezumi Y, Suzuki T, Imai N, Ueno M, Narita I, Kawachi H, Shimizu F, Nikolic-Paterson DJ, Uchiyama M (2006) Histological differences in new-onset IgA nephropathy between children and adults. Nephrol Dial Transplant 21(12):3466–3474. https://doi.org/10.1093/ndt/gfl455

    Article  PubMed  Google Scholar 

  22. 22.

    Grcevska L, Ristovska V, Nikolov V, Petrusevska G, Milovanceva-Popovska M, Polenakovic M (2010) The Oxford classification of IgA nephropathy: single centre experience. Prilozi 31(2):7–16

    PubMed  Google Scholar 

  23. 23.

    Katafuchi R, Ninomiya T, Nagata M, Mitsuiki K, Hirakata H (2011) Validation study of oxford classification of IgA nephropathy: the significance of extracapillary proliferation. Clin J Am Soc Nephrol 6(12):2806–2813. https://doi.org/10.2215/CJN.02890311

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Herzenberg AM, Fogo AB, Reich HN, Troyanov S, Bavbek N, Massat AE, Hunley TE, Hladunewich MA, Julian BA, Fervenza FC, Cattran DC (2011) Validation of the Oxford classification of IgA nephropathy. Kidney Int 80(3):310–317. https://doi.org/10.1038/ki.2011.126

    Article  PubMed  Google Scholar 

  25. 25.

    Shi SF, Wang SX, Jiang L, Lv JC, Liu LJ, Chen YQ, Zhu SN, Liu G, Zou WZ, Zhang H, Wang HY (2011) Pathologic predictors of renal outcome and therapeutic efficacy in IgA nephropathy: validation of the oxford classification. Clin J Am Soc Nephrol 6(9):2175–2184. https://doi.org/10.2215/CJN.11521210

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Yau T, Korbet SM, Schwartz MM, Cimbaluk DJ (2011) The Oxford classification of IgA nephropathy: a retrospective analysis. AM J NEPHROL 34(5):435–444. https://doi.org/10.1159/000332223

    Article  PubMed  Google Scholar 

  27. 27.

    Kang SH, Choi SR, Park HS, Lee JY, Sun IO, Hwang HS, Chung BH, Park CW, Yang CW, Kim YS, Choi YJ, Choi BS (2012) The Oxford classification as a predictor of prognosis in patients with IgA nephropathy. Nephrol Dial Transplant 27(1):252–258. https://doi.org/10.1093/ndt/gfr295

    Article  PubMed  Google Scholar 

  28. 28.

    Le W, Zeng CH, Liu Z, Liu D, Yang Q, Lin RX, Xia ZK, Fan ZM, Zhu G, Wu Y, Xu H, Zhai Y, Ding Y, Yang X, Liang S, Chen H, Xu F, Huang Q, Shen H, Wang J, Fogo AB, Liu ZH (2012) Validation of the Oxford classification of IgA nephropathy for pediatric patients from China. BMC Nephrol 13:158. https://doi.org/10.1186/1471-2369-13-158

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lee H, Yi SH, Seo MS, Hyun JN, Jeon JS, Noh H, Han DC, Hwang SD, Jin SY, Kwon SH (2012) Validation of the Oxford classification of IgA nephropathy: a single-center study in Korean adults. Korean J Intern Med 27(3):293–300. https://doi.org/10.3904/kjim.2012.27.3.293

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Moriyama T, Nakayama K, Iwasaki C, Ochi A, Tsuruta Y, Itabashi M, Tsukada M, Takei T, Uchida K, Nitta K (2012) Severity of nephrotic IgA nephropathy according to the Oxford classification. Int Urol Nephrol 44(4):1177–1184. https://doi.org/10.1007/s11255-011-0109-5

    Article  PubMed  Google Scholar 

  31. 31.

    Shima Y, Nakanishi K, Hama T, Mukaiyama H, Togawa H, Hashimura Y, Kaito H, Sako M, Iijima K, Yoshikawa N (2012) Validity of the Oxford classification of IgA nephropathy in children. Pediatr Nephrol 27(5):783–792. https://doi.org/10.1007/s00467-011-2061-0

    Article  PubMed  Google Scholar 

  32. 32.

    Tanaka S, Ninomiya T, Katafuchi R, Masutani K, Tsuchimoto A, Noguchi H, Hirakata H, Tsuruya K, Kitazono T (2013) Development and validation of a prediction rule using the Oxford classification in IgA nephropathy. Clin J Am Soc Nephrol 8(12):2082–2090. https://doi.org/10.2215/CJN.03480413

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Zeng CH, Le W, Ni Z, Zhang M, Miao L, Luo P, Wang R, Lv Z, Chen J, Tian J, Chen N, Pan X, Fu P, Hu Z, Wang L, Fan Q, Zheng H, Zhang D, Wang Y, Huo Y, Lin H, Chen S, Sun S, Wang Y, Liu Z, Liu D, Ma L, Pan T, Zhang A, Jiang X, Xing C, Sun B, Zhou Q, Tang W, Liu F, Liu Y, Liang S, Xu F, Huang Q, Shen H, Wang J, Shyr Y, Phillips S, Troyanov S, Fogo A, Liu ZH (2012) A multicenter application and evaluation of the oxford classification of IgA nephropathy in adult Chinese patients. Am J Kidney Dis 60(5):812–820. https://doi.org/10.1053/j.ajkd.2012.06.01

    Article  PubMed  Google Scholar 

  34. 34.

    Coppo R, Troyanov S, Bellur S, Cattran D, Cook HT, Feehally J, Roberts IS, Morando L, Camilla R, Tesar V, Lunberg S, Gesualdo L, Emma F, Rollino C, Amore A, Praga M, Feriozzi S, Segoloni G, Pani A, Cancarini G, Durlik M, Moggia E, Mazzucco G, Giannakakis C, Honsova E, Sundelin BB, Di Palma AM, Ferrario F, Gutierrez E, Asunis AM, Barratt J, Tardanico R, Perkowska-Ptasinska A (2014) Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int 86(4):828–836. https://doi.org/10.1038/ki.2014.63

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hisano S, Joh K, Katafuchi R, Shimizu A, Hashiguchi N, Kawamura T, Matsuo S (2017) Reproducibility for pathological prognostic parameters of the Oxford classification of IgA nephropathy: a Japanese cohort study of the Ministry of Health Labor and Welfare. Clin Exp Nephrol 21(1):92–96. https://doi.org/10.1007/s10157-016-1258-8

    Article  PubMed  Google Scholar 

  36. 36.

    Alamartine E, Sauron C, Laurent B, Sury A, Seffert A, Mariat C (2011) The use of the Oxford classification of IgA nephropathy to predict renal survival. Clin J Am Soc Nephrol 6(10):2384–2388. https://doi.org/10.2215/CJN.01170211

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Stangou M, Ekonomidou D, Giamalis P, Liakou H, Tsiantoulas A, Pantzaki A, Papagianni A, Efstratiadis G, Alexopoulos E, Memmos D (2011) Steroids and azathioprine in the treatment of IgA nephropathy. Clin Exp Nephrol 15(3):373–380. https://doi.org/10.1007/s10157-011-0415-3

    Article  PubMed  Google Scholar 

  38. 38.

    Pozzi C, Andrulli S, Pani A, Scaini P, Roccatello D, Fogazzi G, Pecchini P, Rustichelli R, Finocchiaro P, Del VL, Locatelli F (2013) IgA nephropathy with severe chronic renal failure: a randomized controlled trial of corticosteroids and azathioprine. J Nephrol 26(1):86–93. https://doi.org/10.5301/jn.5000110

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Clinical Advanced Techniques, Primary Research and Development Plan of Jiangsu Province (BE2017719) and the Paediatric Medical Innovation Team of Jiangsu Province (CXTDA2017022).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhengkun Xia or Chunlin Gao.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5624 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Fang, X., Xia, Z. et al. Long-term renal survival and undetected risk factors of IgA nephropathy in Chinese children—a retrospective 1243 cases analysis from single centre experience. J Nephrol (2020). https://doi.org/10.1007/s40620-020-00767-4

Download citation

Keywords

  • IgA nephropathy
  • Chinese children
  • Renal survival
  • Long-term observation
  • Undetected risk factors