Skip to main content

Advertisement

Log in

The effect of polymorphism of uric acid transporters on uric acid transport

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

The abnormal metabolism of uric acid results in many disease such as chronic kidney disease, hyperuricemia, nephrolithiasis, gout, hypertension, vascular disease and so on. Serum uric acid levels are maintained by the balance between production and elimination. There are many factors that maintain the balance of serum uric acid. One of them is transporters which are responsible for the debouchment of uric acid within blood. The transport and excretion of uric acid is a complicated procedure which is related with various transporters such as OAT1, OAT3, OAT4, URAT1, GLUT9, BCRP, MRP4, NPT1, NTP4, and so on. In recent years, a large number of genome-wide association studies have shown that the single nucleotide polymorphisms of uric acid transporters were closely related to serum uric acid level. What’s more, some mutations on these gene locus may also break the balance of serum uric acid. Here, the polymorphisms of uric acid transporters closely related with the serum uric acid balance were reviewed and discussed because of their important significance in clinical therapy for a precision medicine. The mechanism of metabolic diseases with gene variation may provide new strategy for the design and development of innovative drug to treat diseases with uric acid metabolic disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chaudhary K, Malhotra K, Sowers J, Aroor A (2013) Uric acid—key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med 3(3):208–220. https://doi.org/10.1159/000355405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang D-H, Chen W (2011) Uric ACID AND CHRONIC KIDNEY DISEASE: NEW UNDERSTANDING OF AN OLD PROBLem. Semin Nephrol 31(5):447–452. https://doi.org/10.1016/j.semnephrol.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  3. El Ridi R, Tallima H (2017) Physiological functions and pathogenic potential of uric acid: a review. J Adv Res 8(5):487–493. https://doi.org/10.1016/j.jare.2017.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Álvarez-Lario B, Macarrón-Vicente J (2010) Uric acid and evolution. Rheumatology 49(11):2010–2015. https://doi.org/10.1093/rheumatology/keq204

    Article  CAS  PubMed  Google Scholar 

  5. Punzi L, Scanu A, Ramonda R, Oliviero F (2012) Gout as autoinflammatory disease: new mechanisms for more appropriated treatment targets. Autoimmun Rev 12(1):66–71. https://doi.org/10.1016/j.autrev.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  6. Su J, Wei Y, Liu M, Liu T, Li J, Ji Y, Liang J (2014) Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Arch Pharmacal Res 37(10):1336–1344. https://doi.org/10.1007/s12272-014-0413-6

    Article  CAS  Google Scholar 

  7. Richette P, Bardin T (2010) Gout. Lancet 375(9711):318–328. https://doi.org/10.1016/s0140-6736(09)60883-7

    Article  CAS  PubMed  Google Scholar 

  8. Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, Yamanashi Y, Kasuga H, Nakashima H, Nakamura T, Takada Y, Kawamura Y, Inoue H, Okada C, Utsumi Y, Ikebuchi Y, Ito K, Nakamura M, Shinohara Y, Hosoyamada M, Sakurai Y, Shinomiya N, Hosoya T, Suzuki H (2012) Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 3:764. https://doi.org/10.1038/ncomms1756

    Article  CAS  PubMed  Google Scholar 

  9. Gustafsson D, Unwin R (2013) The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality. BMC Nephrol 14(1):164. https://doi.org/10.1186/1471-2369-14-164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abeles AM (2015) Hyperuricemia, gout, and cardiovascular disease: an update. Curr Rheumatol Rep 17(3):13. https://doi.org/10.1007/s11926-015-0495-2

    Article  CAS  PubMed  Google Scholar 

  11. Galassi FM, Borghi C (2015) A brief history of uric acid: from gout to cardiovascular risk factor. Eur J Intern Med 26(5):373. https://doi.org/10.1016/j.ejim.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  12. Monti E, Trinchieri A, Magri V, Cleves A, Perletti G (2016) Herbal medicines for urinary stone treatment. A systematic review. Archivio Italiano di Urologia e Andrologia 88(1):38–46. https://doi.org/10.4081/aiua.2016.1.38

    Article  CAS  PubMed  Google Scholar 

  13. Penniston KL, Nakada SY (2013) Diet and alternative therapies in the management of stone disease. Urol Clin 40(1):31–46. https://doi.org/10.1016/j.ucl.2012.09.011

    Article  Google Scholar 

  14. Martillo MA, Nazzal L, Crittenden DB (2014) The crystallization of monosodium urate. Curr Rheumatol Rep 16(2):400. https://doi.org/10.1007/s11926-013-0400-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V (2016) Regulation of uric acid metabolism and excretion. Int J Cardiol 213:8–14. https://doi.org/10.1016/j.ijcard.2015.08.109

    Article  PubMed  Google Scholar 

  16. Burckhardt G (2012) Drug transport by organic anion transporters (OATs). Pharmacol Ther 136(1):106–130. https://doi.org/10.1016/j.pharmthera.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  17. Yang Q, Köttgen A, Dehghan A, Smith AV, Glazer NL, Chen M-H, Chasman DI, Aspelund T, Eiriksdottir G, Harris TB, Launer L, Nalls M, Hernandez D, Arking DE, Boerwinkle E, Grove ML, Li M, Linda Kao WH, Chonchol M, Haritunians T, Li G, Lumley T, Psaty BM, Shlipak M, Hwang S-J, Larson MG, O’Donnell CJ, Upadhyay A, van Duijn CM, Hofman A, Rivadeneira F, Stricker B, Uitterlinden AG, Paré G, Parker AN, Ridker PM, Siscovick DS, Gudnason V, Witteman JC, Fox CS, Coresh J (2010) Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet 3(6):523–530. https://doi.org/10.1161/circgenetics.109.934455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mount D (2013) The kidney in hyperuricemia and gout. Curr Opin Nephrol Hypertens 22(2):216–223

    Article  CAS  PubMed  Google Scholar 

  19. Nigam SK (2015) What do drug transporters really do? Nat Rev Drug Discov 14(1):29–44. https://doi.org/10.1038/nrd4461

    Article  CAS  PubMed  Google Scholar 

  20. Lipkowitz MS (2012) Regulation of uric acid excretion by the kidney. Curr Rheumatol Rep 14(2):179–188. https://doi.org/10.1007/s11926-012-0240-z

    Article  CAS  PubMed  Google Scholar 

  21. Tan PK, Farrar JE, Gaucher EA, Miner JN (2016) Coevolution of URAT1 and uricase during primate evolution: implications for serum urate homeostasis and gout. Mol Biol Evol 33(9):2193–2200. https://doi.org/10.1093/molbev/msw116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Higashino T, Matsuo H, Sakiyama M, Nakayama A, Nakamura T, Takada T, Ogata H, Kawamura Y, Kawaguchi M, Naito M, Kawai S, Takada Y, Ooyama H, Suzuki H, Shinomiya N (2016) Common variant of PDZ domain containing 1 (PDZK1) gene is associated with gout susceptibility: a replication study and meta-analysis in Japanese population. Drug Metab Pharmacokinet 31(6):464–466. https://doi.org/10.1016/j.dmpk.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  23. Stiburkova B, Taylor J, Marinaki AM, Sebesta I (2012) Acute kidney injury in two children caused by renal hypouricaemia type 2. Pediatr Nephrol 27(8):1411–1415. https://doi.org/10.1007/s00467-012-2174-0

    Article  PubMed  Google Scholar 

  24. Eleftheriadis T, Golphinopoulos S, Pissas G, Stefanidis I (2017) Asymptomatic hyperuricemia and chronic kidney disease: narrative review of a treatment controversial. J Adv Res 8(5):555–560. https://doi.org/10.1016/j.jare.2017.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen J-H, Chuang S-Y, Chen H-J, Yeh W-T, Pan W-H (2009) Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum 61(2):225–232. https://doi.org/10.1002/art.24164

    Article  CAS  PubMed  Google Scholar 

  26. Vázquez-Mellado J, Jiménez-Vaca AL, Cuevas-Covarrubias S, Alvarado-Romano V, Pozo-Molina G, Burgos-Vargas R (2007) Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology 46(2):215–219. https://doi.org/10.1093/rheumatology/kel205

    Article  PubMed  Google Scholar 

  27. Fujita K, Ichida K (2016) A novel compound heterozygous mutation in the SLC22A12 (URAT1) gene in a Japanese patient associated with renal hypouricemia. Clin Chim Acta 463:119–121. https://doi.org/10.1016/j.cca.2016.10.025

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Ding H, Chen C, Chen Y, Wang DW, Lv Y (2013) Novel URAT1 mutations caused acute renal failure after exercise in two Chinese families with renal hypouricemia. Gene 512(1):97–101. https://doi.org/10.1016/j.gene.2012.09.115

    Article  CAS  PubMed  Google Scholar 

  29. Graessler J, Graessler A, Unger S, Kopprasch S, Tausche A-K, Kuhlisch E, Schroeder H-E (2006) Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum 54(1):292–300. https://doi.org/10.1002/art.21499

    Article  CAS  PubMed  Google Scholar 

  30. Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, Saito A, Sone H (2009) Association between serum uric acid and development of type 2 diabetes. Diabetes Care 32(9):1737–1742. https://doi.org/10.2337/dc09-0288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, Mangino M, Albrecht E, Wallace C, Farrall M, Johansson A, Nyholt DR, Aulchenko Y, Beckmann JS, Bergmann S, Bochud M, Brown M, Campbell H, Consortium E, Connell J, Dominiczak A, Homuth G, Lamina C, McCarthy MI, Consortium E, Meitinger T, Mooser V, Munroe P, Nauck M, Peden J, Prokisch H, Salo P, Salomaa V, Samani NJ, Schlessinger D, Uda M, Völker U, Waeber G, Waterworth D, Wang-Sattler R, Wright AF, Adamski J, Whitfield JB, Gyllensten U, Wilson JF, Rudan I, Pramstaller P, Watkins H, Consortium P, Doering A, Wichmann HE, Study K, Spector TD, Peltonen L, Völzke H, Nagaraja R, Vollenweider P, Caulfield M, Illig T, Gieger C (2009) Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5(6):e1000504. https://doi.org/10.1371/journal.pgen.1000504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li M, Li Q, Li C-G, Guo M, Xu J-M, Tang Y-Y, Zhao Q-S, Hu Y-H, Cheng Z-F, Zhang J-C (2015) Genetic polymorphisms in the PDZK1 gene and susceptibility to gout in male Han Chinese: a case–control study. Int J Clin Exp Med 8(8):13911–13918

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Phipps-Green AJ, Merriman ME, Topless R, Altaf S, Montgomery GW, Franklin C, Jones GT, van Rij AM, White D, Stamp LK, Dalbeth N, Merriman TR (2016) Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann Rheum Dis 75(1):124–130. https://doi.org/10.1136/annrheumdis-2014-205877

    Article  CAS  PubMed  Google Scholar 

  34. Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A (2007) Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol 18(2):430–439. https://doi.org/10.1681/asn.2006040415

    Article  CAS  PubMed  Google Scholar 

  35. Miyazaki H, Anzai N, Ekaratanawong S, Sakata T, Shin HJ, Jutabha P, Hirata T, He X, Nonoguchi H, Tomita K, Kanai Y, Endou H (2005) Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J Am Soc Nephrol 16(12):3498–3506. https://doi.org/10.1681/asn.2005030306

    Article  CAS  PubMed  Google Scholar 

  36. Sakiyama M, Matsuo H, Shimizu S, Nakashima H, Nakayama A, Chiba T, Naito M, Takada T, Suzuki H, Hamajima N, Ichida K, Shimizu T, Shinomiya N (2014) A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout. Drug Metab Pharmacokinet 29(2):208–210. https://doi.org/10.2133/dmpk.dmpk-13-nt-070

    Article  CAS  PubMed  Google Scholar 

  37. Clémençon B, Lüscher BP, Fine M, Baumann MU, Surbek DV, Bonny O, Hediger MA (2014) Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system. PLoS One 9(10):e108852. https://doi.org/10.1371/journal.pone.0108852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, Rechavi G, Amariglio N, Ganon L, Sela B-A, Bahat H, Goldman M, Weissgarten J, Millar MR, Wright AF, Holtzman EJ (2010) Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol 21(1):64–72. https://doi.org/10.1681/asn.2009040406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawamura Y, Matsuo H, Chiba T, Nagamori S, Nakayama A, Inoue H, Utsumi Y, Oda T, Nishiyama J, Kanai Y, Shinomiya N (2011) Pathogenic GLUT9 mutations causing renal hypouricemia type 2 (RHUC2). Nucleosides Nucleotides Nucleic Acids 30(12):1105–1111. https://doi.org/10.1080/15257770.2011.623685

    Article  CAS  PubMed  Google Scholar 

  40. Döring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, Fischer G, Henke K, Klopp N, Kronenberg F, Paulweber B, Pfeufer A, Rosskopf D, Völzke H, Illig T, Meitinger T, Wichmann HE, Meisinger C (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 40(4):430–436. https://doi.org/10.1038/ng.107

    Article  CAS  PubMed  Google Scholar 

  41. Bannasch D, Safra N, Young A, Karmi N, Schaible RS, Ling GV (2008) Mutations in the SLC2A9 gene cause hyperuricosuria and hyperuricemia in the dog. PLoS Genet 4(11):e1000246. https://doi.org/10.1371/journal.pgen.1000246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N (2008) Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 83(6):744–751. https://doi.org/10.1016/j.ajhg.2008.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tabara Y, Kohara K, Kawamoto R, Hiura Y, Nishimura K, Morisaki T, Kokubo Y, Okamura T, Tomoike H, Iwai N, Miki T (2010) Association of four genetic loci with uric acid levels and reduced renal function: the J-SHIPP Suita study. Am J Nephrol 32(3):279–286. https://doi.org/10.1159/000318943

    Article  CAS  PubMed  Google Scholar 

  44. Dehghan A, Köttgen A, Yang Q, Hwang S-J, Kao WL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Duijn CM, Witteman JC, Coresh J, Fox CS (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372(9654):1953–1961. https://doi.org/10.1016/s0140-6736(08)61343-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N (2010) Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42(3):210–215. https://doi.org/10.1038/ng.531

    Article  CAS  PubMed  Google Scholar 

  46. Bhatnagar V, Richard EL, Wu W, Nievergelt CM, Lipkowitz MS, Jeff J, Maihofer AX, Nigam SK (2016) Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin Kidney J 9(3):444–453. https://doi.org/10.1093/ckj/sfw010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yano H, Tamura Y, Kobayashi K, Tanemoto M, Uchida S (2014) Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin Exp Nephrol 18(1):50–55. https://doi.org/10.1007/s10157-013-0806-8

    Article  CAS  PubMed  Google Scholar 

  48. Hosomi A, Nakanishi T, Fujita T, Tamai I (2012) Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One 7(2):e30456. https://doi.org/10.1371/journal.pone.0030456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang F, Liang Y-j, Wu X-p, Chen L-m, To KKW, Dai C-l, Yan Y-y, Wang Y-s, Tong X-z, Fu L-w (2011) Prognostic value of the multidrug resistance transporter ABCG2 gene polymorphisms in Chinese patients with de novo acute leukaemia. Eur J Cancer 47 (13):1990–1999. https://doi.org/10.1016/j.ejca.2011.03.032

    Article  CAS  PubMed  Google Scholar 

  50. Karns R, Zhang G, Sun G, Rao Indugula S, Cheng H, Havas-Augustin D, Novokmet N, Rudan D, Durakovic Z, Missoni S, Chakraborty R, Rudan P, Deka R (2012) Genome-wide association of serum uric acid concentration: replication of sequence variants in an island population of the Adriatic coast of Croatia. Ann Hum Genet 76(2):121–127. https://doi.org/10.1111/j.1469-1809.2011.00698.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamagishi K, Tanigawa T, Kitamura A, Köttgen A, Folsom AR, Iso H, Investigators C (2010) The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology 49(8):1461–1465. https://doi.org/10.1093/rheumatology/keq096

    Article  CAS  PubMed  Google Scholar 

  52. Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 106(25):10338–10342. https://doi.org/10.1073/pnas.0901249106

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dong Z, Guo S, Yang Y, Wu J, Guan M, Zou H, Jin L, Wang J (2015) Association between ABCG2 Q141K polymorphism and gout risk affected by ethnicity and gender: a systematic review and meta-analysis. Int J Rheum Dis 18(4):382–391. https://doi.org/10.1111/1756-185x.12519

    Article  CAS  PubMed  Google Scholar 

  54. Cheng S-T, Wu S, Su C-W, Teng M-S, Hsu L-A, Ko Y-L (2017) Association of ABCG2 rs2231142-A allele and serum uric acid levels in male and obese individuals in a Han Taiwanese population. J Formos Med Assoc 116(1):18–23. https://doi.org/10.1016/j.jfma.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  55. Brandstätter A, Kiechl S, Kollerits B, Hunt SC, Heid IM, Coassin S, Willeit J, Adams TD, Illig T, Hopkins PN, Kronenberg F (2008) Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care 31(8):1662–1667. https://doi.org/10.2337/dc08-0349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu M, Tomlinson B (2012) Gender-dependent associations of uric acid levels with a polymorphism in SLC2A9 in Han Chinese patients. Scand J Rheumatol 41(2):161–163. https://doi.org/10.3109/03009742.2011.637952

    Article  CAS  PubMed  Google Scholar 

  57. Nakayama A, Matsuo H, Nakaoka H, Nakamura T, Nakashima H, Takada Y, Oikawa Y, Takada T, Sakiyama M, Shimizu S, Kawamura Y, Chiba T, Abe J, Wakai K, Kawai S, Okada R, Tamura T, Shichijo Y, Akashi A, Suzuki H, Hosoya T, Sakurai Y, Ichida K, Shinomiya N (2014) Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci Rep 4:5227. https://doi.org/10.1038/srep05227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matsuo H, Takada T, Nakayama A, Shimizu T, Sakiyama M, Shimizu S, Chiba T, Nakashima H, Nakamura T, Takada Y, Sakurai Y, Hosoya T, Shinomiya N, Ichida K (2014) ABCG2 dysfunction increases the risk of renal overload hyperuricemia. Nucleosides Nucleotides Nucleic Acids 33(4–6):266–274. https://doi.org/10.1080/15257770.2013.866679

    Article  CAS  PubMed  Google Scholar 

  59. Slot AJ, Molinski SV, Cole SPC (2011) Mammalian multidrug-resistance proteins (MRPs). Essays Biochem 50(1):179–207. https://doi.org/10.1042/bse0500179

    Article  CAS  PubMed  Google Scholar 

  60. Bataille AM, Goldmeyer J, Renfro JL (2008) Avian renal proximal tubule epithelium urate secretion is mediated by Mrp4. Am J Physiol Regul Integr Comp Physiol 295(6):R2024–R2033. https://doi.org/10.1152/ajpregu.90471.2008

    Article  CAS  PubMed  Google Scholar 

  61. Dankers ACA, Mutsaers HAM, Dijkman HBPM, van den Heuvel LP, Hoenderop JG, Sweep FCGJ, Russel FGM, Masereeuw R (2013) Hyperuricemia influences tryptophan metabolism via inhibition of multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP). Biochim Biophys Acta 1832(10):1715–1722. https://doi.org/10.1016/j.bbadis.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  62. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  63. Banerjee M, Marensi V, Conseil G, Le XC, Cole SPC, Leslie EM (2016) Polymorphic variants of MRP4/ABCC4 differentially modulate the transport of methylated arsenic metabolites and physiological organic anions. Biochem Pharmacol 120:72–82. https://doi.org/10.1016/j.bcp.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  64. Tanner C, Boocock J, Boocock J, Stahl EA, Dobbyn A, Mandal AK, Cadzow M, Phipps-Green AJ, Topless RK, Hindmarsh JH, Stamp LK, Dalbeth N, Choi HK, Mount DB, Merriman TR (2017) Population-specific resequencing associates the ATP-binding cassette subfamily C member 4 gene with gout in New Zealand Māori and Pacific Men. Arthritis Rheumatol 69(7):1461–1469. https://doi.org/10.1002/art.40110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Iharada M, Miyaji T, Fujimoto T, Hiasa M, Anzai N, Omote H, Moriyama Y (2010) Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter. J Biol Chem 285(34):26107–26113. https://doi.org/10.1074/jbc.m110.122721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chiba T, Matsuo H, Kawamura Y, Nagamori S, Nishiyama T, Wei L, Nakayama A, Nakamura T, Sakiyama M, Takada T, Taketani Y, Suma S, Naito M, Oda T, Kumagai H, Moriyama Y, Ichida K, Shimizu T, Kanai Y, Shinomiya N (2015) NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol 67(1):281–287. https://doi.org/10.1002/art.38884

    Article  CAS  PubMed  Google Scholar 

  67. Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, Endou H, Kamatani N, Yamanaka H (2010) Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis 69(6):1232–1234. https://doi.org/10.1136/ard.2008.106856

    Article  CAS  PubMed  Google Scholar 

  68. Hollis-Moffatt JE, Phipps-Green AJ, Chapman B, Jones GT, van Rij A, Gow PJ, Harrison AA, Highton J, Jones PB, Montgomery GW, Stamp LK, Dalbeth N, Merriman TR (2012) The renal urate transporter SLC17A1 locus: confirmation of association with gout. Arthritis Res Ther 14(2):R92. https://doi.org/10.1186/ar3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jutabha P, Anzai N, Kitamura K, Taniguchi A, Kaneko S, Yan K, Yamada H, Shimada H, Kimura T, Katada T, Fukutomi T, Tomita K, Urano W, Yamanaka H, Seki G, Fujita T, Moriyama Y, Yamada A, Uchida S, Wempe MF, Endou H, Sakurai H (2010) Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem 285(45):35123–35132. https://doi.org/10.1074/jbc.m110.121301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jutabha P, Anzai N, Kimura T, Taniguchi A, Urano W, Yamanaka H, Endou H, Sakurai H (2011) Functional analysis of human sodium-phosphate transporter 4 (NPT4/SLC17A3) polymorphisms. J Pharmacol Sci 115(2):249–253. https://doi.org/10.1254/jphs.10228sc

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the members of their laboratories who have contributed much of the work discussed in this review.

Funding

This work was supported by National natural science foundation key project [Grant number 81430096]; National natural science foundation youth science fund project [Grant number 81503154]; National Science Foundation for Post-doctoral Researchers [Grant number 2015M570231]; Program for Changjiang Scholars and Innovative Research Team in University [grant number IRT_14R41]; Key Projects of Tianjin Science and Technology Support Program [Grant number 16YFZCSY00440]; Science and Technology Program of Tianjin [Grant number 15PTCYSY00030] and Tianjin Research Program of Application Foundation and Advanced Technology [Grant number 15JCQNJC14100].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidang Wu or Xiulin Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cui, T., Ci, X. et al. The effect of polymorphism of uric acid transporters on uric acid transport. J Nephrol 32, 177–187 (2019). https://doi.org/10.1007/s40620-018-0546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-018-0546-7

Keywords

Navigation