Skip to main content

Advertisement

Log in

High preoperative plasma endothelin-1 levels are associated with increased acute kidney injury risk after pulmonary endarterectomy

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Objectives

The only curative treatment for chronic thromboembolic pulmonary hypertension (CTEPH) is pulmonary endarterectomy (PEA). PEA requires cardiopulmonary bypass (CPB) which is associated with a high acute kidney injury (AKI) risk. Circulating endothelin-1 (ET-1) levels are elevated in CTEPH, and ET-1 plays a pivotal role in AKI. Because AKI is burdened by high morbidity and mortality, we aimed to evaluate the association between preoperative ET-1 and the risk to develop AKI in CTEPH individuals who undergo PEA. We also evaluated the association of AKI and ET-1 with kidney function and mortality at 1 year after PEA.

Methods

In 385 consecutive patients diagnosed with CTEPH who underwent PEA at the Foundation IRCC Policlinico San Matteo (Pavia, Italy) from January 2009 to April 2015, we assessed preoperative circulating ET-1 by ELISA and identified presence of AKI based on 2012 KDIGO criteria.

Results

AKI occurred in 26.5% of the 347 patients included in the analysis, and was independently associated with preoperative ET-1 (p = 0.008), body mass index (BMI) (p = 0.022), male gender (p = 0.005) and duration of CPB (p = 0.002). At 1-year post PEA, estimated glomerular filtration rate (eGFR) significantly improved in patients who did not develop AKI [ΔeGFR 5.6 ml/min/1.73 m2 (95% CI 3.6–7.6), p < 0.001] but not in those with perioperative AKI. AKI (p < 0.001), age (p < 0.001), preoperative eGFR (p < 0.001) and systemic hypertension diagnosis (p = 0.015) were independently associated with 1-year ΔeGFR. Neither perioperative AKI nor preoperative ET-1 was associated with 1-year survival.

Conclusion

Perioperative AKI is associated with higher preoperative circulating ET-1 and it negatively influences long-term kidney function in patients with CTEPH who undergo PEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lameire NH, Bagga A, Cruz D et al (2013) Acute kidney injury: an increasing global concern. Lancet 382:170–179. https://doi.org/10.1016/S0140-6736(13)60647-9

    Article  PubMed  Google Scholar 

  2. Tomita K, Ujiie K, Nakanishi T et al (1989) Plasma endothelin levels in patients with acute renal failure. N Engl J Med 321:1127. https://doi.org/10.1056/NEJM198910193211615

    Article  CAS  PubMed  Google Scholar 

  3. Sørensen SS, Madsen JK, Pedersen EB (1994) Systemic and renal effect of intravenous infusion of endothelin-1 in healthy human volunteers. Am J Physiol 266:F411–F418

    PubMed  Google Scholar 

  4. Rabelink TJ, Kaasjager KA, Boer P et al (1994) Effects of endothelin-1 on renal function in humans: implications for physiology and pathophysiology. Kidney Int 46:376–381

    Article  CAS  Google Scholar 

  5. Kaasjager KA, Shaw S, Koomans HA, Rabelink TJ (1997) Role of endothelin receptor subtypes in the systemic and renal responses to endothelin-1 in humans. J Am Soc Nephrol 8:32–39

    CAS  PubMed  Google Scholar 

  6. De Miguel C, Speed J, Kasztan M et al (2016) Endothelin-1 and the kidney: new perspectives and recent findings. Curr Opin Nephrol Hypertens 25:35–41. https://doi.org/10.1097/MNH.0000000000000185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shao D, Park JES, Wort SJ (2011) The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res 63:504–511. https://doi.org/10.1016/j.phrs.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  8. D’Armini A, Cattadori B, Monterosso C et al (2000) Pulmonary thromboendarterectomy in patients with chronic thromboembolic pulmonary hypertension: hemodynamic characteristics and changes. Eur J Cardio-Thoracic Surg 18:696–702. https://doi.org/10.1016/S1010-7940(00)00584-4

    Article  Google Scholar 

  9. Mao H, Katz N, Ariyanon W et al (2014) Cardiac surgery-associated acute kidney injury. Blood Purif 37(Suppl 2):34–50. https://doi.org/10.1159/000361062

    Article  PubMed  Google Scholar 

  10. Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818. https://doi.org/10.1001/jama.294.7.813

    Article  CAS  PubMed  Google Scholar 

  11. (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:6. https://doi.org/10.1038/kisup.2012.6

  12. Stewart DJ, Levy RD, Cernacek P, Langleben D (1991) Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med 114:464–469

    Article  CAS  Google Scholar 

  13. Bauer M, Wilkens H, Langer F et al (2002) Selective upregulation of endothelin B receptor gene expression in severe pulmonary hypertension. Circulation 105:1034–1036

    Article  CAS  Google Scholar 

  14. Langer F, Bauer M, Tscholl D et al (2005) Circulating big endothelin-1: an active role in pulmonary thromboendarterectomy? J Thorac Cardiovasc Surg 130:1342–1347. https://doi.org/10.1016/j.jtcvs.2005.06.044

    Article  CAS  PubMed  Google Scholar 

  15. Reesink HJ, Meijer RC, Lutter R et al (2006) Hemodynamic and clinical correlates of endothelin-1 in chronic thromboembolic pulmonary hypertension. Circ J 70:1058–1063

    Article  CAS  Google Scholar 

  16. Giaid A, Yanagisawa M, Langleben D et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739. https://doi.org/10.1056/NEJM199306173282402

    Article  CAS  PubMed  Google Scholar 

  17. Bellomo R, Auriemma S, Fabbri A et al (2008) The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs 31:166–178

    Article  CAS  Google Scholar 

  18. Kumar AB, Suneja M, Bayman EO et al (2012) Association between postoperative acute kidney injury and duration of cardiopulmonary bypass: a meta-analysis. J Cardiothorac Vasc Anesth 26:64–69. https://doi.org/10.1053/j.jvca.2011.07.007

    Article  PubMed  Google Scholar 

  19. Verma SK, Molitoris BA (2015) Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 35:96–107. https://doi.org/10.1016/j.semnephrol.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  20. De Miguel C, Pollock DM, Pollock JS (2015) Endothelium-derived ET-1 and the development of renal injury. Am J Physiol Regul Integr Comp Physiol 309:R1071–R1073. https://doi.org/10.1152/ajpregu.00142.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharfuddin AA, Molitoris BA (2011) Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 7:189–200. https://doi.org/10.1038/nrneph.2011.16

    Article  CAS  PubMed  Google Scholar 

  22. Gregorini M, Corradetti V, Pattonieri EF et al (2017) Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevents ischaemic injury. J Cell Mol Med 21:3381–3393. https://doi.org/10.1111/jcmm.13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rampino T, Gregorini M, Guidetti C et al (2007) KCNA1 and TRPC6 ion channels and NHE1 exchanger operate the biological outcome of HGF/scatter factor in renal tubular cells. Growth Factors 25:382–391. https://doi.org/10.1080/08977190801892184

    Article  CAS  PubMed  Google Scholar 

  24. Esposito C, Grosjean F, Torreggiani M et al (2011) Sirolimus prevents short-term renal changes induced by ischemia-reperfusion injury in rats. Am J Nephrol 33:239–249. https://doi.org/10.1159/000324577

    Article  CAS  PubMed  Google Scholar 

  25. Arfian N, Emoto N, Vignon-Zellweger N et al (2012) ET-1 deletion from endothelial cells protects the kidney during the extension phase of ischemia/reperfusion injury. Biochem Biophys Res Commun 425:443–449. https://doi.org/10.1016/j.bbrc.2012.07.121

    Article  CAS  PubMed  Google Scholar 

  26. Zager RA, Johnson ACM, Andress D, Becker K (2013) Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int 84:703–712. https://doi.org/10.1038/ki.2013.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mino N, Kobayashi M, Nakajima A et al (1992) Protective effect of a selective endothelin receptor antagonist, BQ-123, in ischemic acute renal failure in rats. Eur J Pharmacol 221:77–83

    Article  CAS  Google Scholar 

  28. Abu-Saleh N, Ovcharenko E, Awad H et al (2012) Involvement of the endothelin and nitric oxide systems in the pathogenesis of renal ischemic damage in an experimental diabetic model. Life Sci 91:669–675. https://doi.org/10.1016/j.lfs.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  29. Gellai M, Jugus M, Fletcher T et al (1994) Reversal of postischemic acute renal failure with a selective endothelin A receptor antagonist in the rat. J Clin Invest 93:900–906. https://doi.org/10.1172/JCI117046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D’Armini AM, Morsolini M, Mattiucci G et al (2014) Pulmonary endarterectomy for distal chronic thromboembolic pulmonary hypertension. J Thorac Cardiovasc Surg 148:1005–1012.e2. https://doi.org/10.1016/j.jtcvs.2014.06.052

    Article  PubMed  Google Scholar 

  31. López-Farré A, Gómez-Garre D, Bernabeu F, López-Novoa JM (1991) A role for endothelin in the maintenance of post-ischaemic renal failure in the rat. J Physiol 444:513–522

    Article  Google Scholar 

  32. Weil BR, Westby CM, Van Guilder GP et al (2011) Enhanced endothelin-1 system activity with overweight and obesity. Am J Physiol Heart Circ Physiol 301:H689–H695. https://doi.org/10.1152/ajpheart.00206.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madani MM, Auger WR, Pretorius V et al (2012) Pulmonary endarterectomy: recent changes in a single institution’s experience of more than 2,700 patients. Ann Thorac Surg 94:97–103. https://doi.org/10.1016/j.athoracsur.2012.04.004

    Article  PubMed  Google Scholar 

  34. Neugarten J, Sandilya S, Singh B, Golestaneh L (2016) Sex and the risk of AKI following cardio-thoracic surgery: a meta-analysis. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.03340316

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dousdampanis P, Trigka K, Fourtounas C, Bargman JM (2014) Role of testosterone in the pathogenesis, progression, prognosis and comorbidity of men with chronic kidney disease. Ther Apher Dial 18:220–230. https://doi.org/10.1111/1744-9987.12101

    Article  CAS  PubMed  Google Scholar 

  36. Jin C, Speed JS, Hyndman KA et al (2013) Sex differences in ET-1 receptor expression and Ca2 + signaling in the IMCD. Am J Physiol Renal Physiol 305:F1099–F1104. https://doi.org/10.1152/ajprenal.00400.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalk P, Thöne-Reineke C, Schwarz A et al (2009) Renal phenotype of ET-1 transgenic mice is modulated by androgens. Eur J Med Res 14:55–58

    Article  CAS  Google Scholar 

  38. Kittikulsuth W, Sullivan J, Pollock D (2013) ET-1 actions in the kidney: evidence for sex differences. Br J Pharmacol 168:318–326. https://doi.org/10.1111/j.1476-5381.2012.01922.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Zhai Z, Wu Y et al (2013) Improvement of right ventricular dysfunction after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of echocardiography to demonstrate restoration of the right ventricle during 2-year follow-up. Thromb Res 131:e196–e201. https://doi.org/10.1016/j.thromres.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  40. Palomba H, Castro I, Yu L, Burdmann EA (2017) The duration of acute kidney injury after cardiac surgery increases the risk of long-term chronic kidney disease. J Nephrol 30:567–572. https://doi.org/10.1007/s40620-016-0351-0

    Article  CAS  PubMed  Google Scholar 

  41. Kaballo MA, Elsayed ME, Stack AG (2017) Linking acute kidney injury to chronic kidney disease: the missing links. J Nephrol 30:461–475. https://doi.org/10.1007/s40620-016-0359-5

    Article  CAS  PubMed  Google Scholar 

  42. Parr SK, Siew ED (2016) Delayed consequences of acute kidney injury. Adv Chronic Kidney Dis 23:186–194. https://doi.org/10.1053/j.ackd.2016.01.014

    Article  PubMed  PubMed Central  Google Scholar 

  43. Libetta C, Esposito P, Sepe V et al (2013) Acute kidney injury: effect of hemodialysis membrane on Hgf and recovery of renal function. Clin Biochem 46:103–108. https://doi.org/10.1016/j.clinbiochem.2012.10.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Cristina Torre for outstanding technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Grosjean.

Ethics declarations

Conflict of interest

Andrea Maria D’Armini: Actelion Pharmaceuticals Ltd, Bayer HealthCare, Merk Sharp Dohme. Catherine Klersy, Statistical consultant for Livanova (occasional).

Ethical statement

This retrospective study was approved by our Institutional Ethic Committee (protocol number 20150016628) and all the procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosjean, F., De Amici, M., Klersy, C. et al. High preoperative plasma endothelin-1 levels are associated with increased acute kidney injury risk after pulmonary endarterectomy. J Nephrol 31, 881–888 (2018). https://doi.org/10.1007/s40620-018-0538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-018-0538-7

Keywords

Navigation