Skip to main content
Log in

Skeletal health in patients with differentiated thyroid carcinoma

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Osteoporosis and fractures are important comorbidities in patients with differentiated thyroid cancer (DTC), with potential negative impact on quality of life and survival. The main determinant of skeletal fragility in DTC is the thyrotropin (TSH)-suppressive therapy, which is commonly recommended to prevent disease’s recurrence, especially in patients with structural incomplete response after thyroid surgery and radio-iodine therapy. TSH-suppressive therapy can stimulate bone resorption with consequent bone loss, deterioration of bone microstructure and high risk of fragility fractures. The skeletal effects of TSH-suppressive therapy may be amplified when thyroid cancer cells localize to the skeleton inducing alterations in bone remodelling, impairment of bone structure and further increase in risk of fractures. The management of skeletal fragility in DTC may be challenging, since prediction of fractures is a matter of uncertainty and data on effectiveness and safety of bone-active agents in this clinical setting are still scanty. This review deals with pathophysiological, clinical and therapeutic aspects of skeletal fragility of patients with DTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cabanillas ME, McFadden DG, Durante C (2016) Thyroid cancer. Lancet 388(10061):2783–2795. https://doi.org/10.1016/s0140-6736(16)30172-6

    Article  CAS  PubMed  Google Scholar 

  2. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L (2016) 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133. https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  3. Somwaru LL, Arnold AM, Joshi N, Fried LP, Cappola AR (2009) High frequency of and factors associated with thyroid hormone over-replacement and under-replacement in men and women aged 65 and over. J Clin Endocrinol Metab 94(4):1342–1345. https://doi.org/10.1210/jc.2008-1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biondi B, Cooper DS (2019) Thyroid hormone suppression therapy. Endocrinol Metab Clin North Am 48(1):227–237. https://doi.org/10.1016/j.ecl.2018.10.008

    Article  PubMed  Google Scholar 

  5. Pacini F, Basolo F, Bellantone R, Boni G, Cannizzaro MA, De Palma M, Durante C, Elisei R, Fadda G, Frasoldati A, Fugazzola L, Guglielmi R, Lombardi CP, Miccoli P, Papini E, Pellegriti G, Pezzullo L, Pontecorvi A, Salvatori M, Seregni E, Vitti P (2018) Italian consensus on diagnosis and treatment of differentiated thyroid cancer joint statements of six Italian societies. J Endocrinol Invest 41(7):849–876. https://doi.org/10.1007/s40618-018-0884-2

    Article  CAS  PubMed  Google Scholar 

  6. Grani G, Ramundo V, Verrienti A, Sponziello M, Durante C (2019) Thyroid hormone therapy in differentiated thyroid cancer. Endocr 66(1):43–50. https://doi.org/10.1007/s12020-019-02051-3

    Article  CAS  Google Scholar 

  7. Iniguez-Ariza NM, Bible KC, Clarke BL (2020) Bone metastases in thyroid cancer. J Bone Oncol 21:100282. https://doi.org/10.1016/j.jbo.2020.100282

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang LY, Palmer FL, Nixon IJ, Thomas D, Patel SG, Shaha AR, Shah JP, Tuttle RM, Ganly I (2014) Multi-organ distant metastases confer worse disease-specific survival in differentiated thyroid cancer. Thyroid 24(11):1594–1599. https://doi.org/10.1089/thy.2014.0173

    Article  CAS  PubMed  Google Scholar 

  9. Muresan MM, Olivier P, Leclere J, Sirveaux F, Brunaud L, Klein M, Zarnegar R, Weryha G (2008) Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer 15(1):37–49. https://doi.org/10.1677/erc-07-0229

    Article  CAS  PubMed  Google Scholar 

  10. Mazziotti G, Formenti AM, Panarotto MB, Arvat E, Chiti A, Cuocolo A, Dottorini ME, Durante C, Agate L, Filetti S, Felicetti F, Filice A, Pace L, Pellegrino T, Rodari M, Salvatori M, Tranfaglia C, Versari A, Viola D, Frara S, Berruti A, Giustina A, Giubbini R (2018) Real-life management and outcome of thyroid carcinoma-related bone metastases results from a nationwide multicenter experience. Endocrine 59(1):90–101. https://doi.org/10.1007/s12020-017-1455-6

    Article  CAS  PubMed  Google Scholar 

  11. Williams GR, Bassett JHD (2018) Thyroid diseases and bone health. J Endocrinol Invest 41(1):99–109. https://doi.org/10.1007/s40618-017-0753-4

    Article  CAS  PubMed  Google Scholar 

  12. Bassett JHD, Williams GR (2016) Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 37(2):135–187. https://doi.org/10.1210/er.2015-1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gauthier K, Chassande O, Plateroti M, Roux JP, Legrand C, Pain B, Rousset B, Weiss R, Trouillas J, Samarut J (1999) Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. Embo j 18(3):623–631. https://doi.org/10.1093/emboj/18.3.623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–25108. https://doi.org/10.1074/jbc.R109.041087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Visser WE, Friesema EC, Visser TJ (2011) Minireview thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 25(1):1–14. https://doi.org/10.1210/me.2010-0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bassett JH, Boyde A, Howell PG, Bassett RH, Galliford TM, Archanco M, Evans H, Lawson MA, Croucher P, St Germain DL, Galton VA, Williams GR (2010) Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc Natl Acad Sci U S A 107(16):7604–7609. https://doi.org/10.1073/pnas.0911346107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13(3):596–611. https://doi.org/10.1210/edrv-13-3-596

    Article  CAS  PubMed  Google Scholar 

  18. Williams GR (2011) Extrathyroidal expression of TSH receptor. Ann Endocrinol (Paris) 72(2):68–73. https://doi.org/10.1016/j.ando.2011.03.006

    Article  CAS  Google Scholar 

  19. Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, Iqbal J, Eldeiry L, Rajendren G, Blair HC, Davies TF, Zaidi M (2003) TSH is a negative regulator of skeletal remodeling. Cell 115(2):151–162. https://doi.org/10.1016/s0092-8674(03)00771-2

    Article  CAS  PubMed  Google Scholar 

  20. Baliram R, Sun L, Cao J, Li J, Latif R, Huber AK, Yuen T, Blair HC, Zaidi M, Davies TF (2012) Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J Clin Invest 122(10):3737–3741. https://doi.org/10.1172/jci63948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun L, Vukicevic S, Baliram R, Yang G, Sendak R, McPherson J, Zhu LL, Iqbal J, Latif R, Natrajan A, Arabi A, Yamoah K, Moonga BS, Gabet Y, Davies TF, Bab I, Abe E, Sampath K, Zaidi M (2008) Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc Natl Acad Sci U S A 105(11):4289–4294. https://doi.org/10.1073/pnas.0712395105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sampath TK, Simic P, Sendak R, Draca N, Bowe AE, O'Brien S, Schiavi SC, McPherson JM, Vukicevic S (2007) Thyroid-stimulating hormone restores bone volume microarchitecture and strength in aged ovariectomized rats. J Bone Miner Res 22(6):849–859. https://doi.org/10.1359/jbmr.070302

    Article  CAS  PubMed  Google Scholar 

  23. Ma R, Morshed S, Latif R, Zaidi M, Davies TF (2011) The influence of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on osteoclastogenesis. Thyroid 21(8):897–906. https://doi.org/10.1089/thy.2010.0457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mazziotti G, Frara S, Giustina A (2018) Pituitary diseases and bone. Endocr Rev 39(4):440–488. https://doi.org/10.1210/er.2018-00005

    Article  PubMed  Google Scholar 

  25. Martini G, Gennari L, De Paola V, Pilli T, Salvadori S, Merlotti D, Valleggi F, Campagna S, Franci B, Avanzati A, Nuti R, Pacini F (2008) The effects of recombinant TSH on bone turnover markers and serum osteoprotegerin and RANKL levels. Thyroid 18(4):455–460. https://doi.org/10.1089/thy.2007.0166

    Article  CAS  PubMed  Google Scholar 

  26. Mazziotti G, Sorvillo F, Piscopo M, Cioffi M, Pilla P, Biondi B, Iorio S, Giustina A, Amato G, Carella C (2005) Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma. J Bone Miner Res 20(3):480–486. https://doi.org/10.1359/jbmr.041126

    Article  CAS  PubMed  Google Scholar 

  27. Bassett JH, Williams AJ, Murphy E, Boyde A, Howell PG, Swinhoe R, Archanco M, Flamant F, Samarut J, Costagliola S, Vassart G, Weiss RE, Refetoff S, Williams GR (2008) A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism. Mol Endocrinol 22(2):501–512. https://doi.org/10.1210/me.2007-0221

    Article  CAS  PubMed  Google Scholar 

  28. van Vliet NA, Noordam R, van Klinken JB, Westendorp RG, Bassett JD, Williams GR, van Heemst D (2018) Thyroid stimulating hormone and bone mineral density evidence from a two-sample Mendelian randomization study and a candidate gene association study. J Bone Miner Res 33(7):1318–1325. https://doi.org/10.1002/jbmr.3426

    Article  CAS  PubMed  Google Scholar 

  29. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664. https://doi.org/10.1056/NEJMra030831

    Article  CAS  PubMed  Google Scholar 

  30. Hofbauer LC, Rachner TD, Coleman RE, Jakob F (2014) Endocrine aspects of bone metastases. Lancet Diabetes Endocrinol 2(6):500–512. https://doi.org/10.1016/s2213-8587(13)70203-1

    Article  CAS  PubMed  Google Scholar 

  31. Kim CW, Hong S, Oh SH, Lee JJ, Han JY, Hong S, Kim SH, Nam M, Kim YS (2015) Change of Bone Mineral Density and Biochemical Markers of Bone Turnover in Patients on Suppressive Levothyroxine Therapy for Differentiated Thyroid Carcinoma. J Bone Metab 22(3):135–141. https://doi.org/10.11005/jbm.2015.22.3.135

    Article  PubMed  PubMed Central  Google Scholar 

  32. Karner I, Hrgovic Z, Sijanovic S, Bukovic D, Klobucar A, Usadel KH, Fassbender WJ (2005) Bone mineral density changes and bone turnover in thyroid carcinoma patients treated with supraphysiologic doses of thyroxine. Eur J Med Res 10(11):480–488

    CAS  PubMed  Google Scholar 

  33. Toivonen J, Tahtela R, Laitinen K, Risteli J, Valimaki MJ (1998) Markers of bone turnover in patients with differentiated thyroid cancer with and following withdrawal of thyroxine suppressive therapy. Eur J Endocrinol 138(6):667–673. https://doi.org/10.1530/eje.0.1380667

    Article  CAS  PubMed  Google Scholar 

  34. Tournis S, Antoniou JD, Liakou CG, Christodoulou J, Papakitsou E, Galanos A, Makris K, Marketos H, Nikopoulou S, Tzavara I, Triantafyllopoulos IK, Dontas I, Papaioannou N, Lyritis GP, Alevizaki M (2015) Volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in women with differentiated thyroid cancer under TSH suppression. Clin Endocrinol (Oxf) 82(2):197–204. https://doi.org/10.1111/cen.12560

    Article  Google Scholar 

  35. Heijckmann AC, Huijberts MS, Geusens P, de Vries J, Menheere PP, Wolffenbuttel BH (2005) Hip bone mineral density bone turnover and risk of fracture in patients on long-term suppressive L-thyroxine therapy for differentiated thyroid carcinoma. Eur J Endocrinol 153(1):23–29. https://doi.org/10.1530/eje.1.01933

    Article  CAS  PubMed  Google Scholar 

  36. Faber J, Galloe AM (1994) Changes in bone mass during prolonged subclinical hyperthyroidism due to L-thyroxine treatment a meta-analysis. Eur J Endocrinol 130(4):350–356. https://doi.org/10.1530/eje.0.1300350

    Article  CAS  PubMed  Google Scholar 

  37. Uzzan B, Campos J, Cucherat M, Nony P, Boissel JP, Perret GY (1996) Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab 81(12):4278–4289. https://doi.org/10.1210/jcem.81.12.8954028

    Article  CAS  PubMed  Google Scholar 

  38. Yoon BH, Lee Y, Oh HJ, Kim SH, Lee YK (2019) Influence of thyroid-stimulating hormone suppression therapy on bone mineral density in patients with differentiated thyroid cancer: a meta-analysis. J Bone Metab 26(1):51–60. https://doi.org/10.11005/jbm.2019.26.1.51

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhu H, Zhang J, Wang J, Zhao X, Gu M (2020) Association of subclinical thyroid dysfunction with bone mineral density and fracture a meta-analysis of prospective cohort studies. Endocr 67(3):685–698. https://doi.org/10.1007/s12020-019-02110-9

    Article  CAS  Google Scholar 

  40. Lee MY, Park JH, Bae KS, Jee YG, Ko AN, Han YJ, Shin JY, Lim JS, Chung CH, Kang SJ (2014) Bone mineral density and bone turnover markers in patients on long-term suppressive levothyroxine therapy for differentiated thyroid cancer. Ann Surg Treat Res 86(2):55–60. https://doi.org/10.4174/astr.2014.86.2.55

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reverter JL, Holgado S, Alonso N, Salinas I, Granada ML, Sanmarti A (2005) Lack of deleterious effect on bone mineral density of long-term thyroxine suppressive therapy for differentiated thyroid carcinoma. Endocr Relat Cancer 12(4):973–981. https://doi.org/10.1677/erc.1.01072

    Article  CAS  PubMed  Google Scholar 

  42. Kim EH, Jeon YK, Pak K, Kim IJ, Kim SJ, Shin S, Kim BH, Kim SS, Lee BJ, Lee JG, Goh TS, Kim K (2019) Effects of thyrotropin suppression on bone health in menopausal women with total thyroidectomy. J Bone Metab 26(1):31–38. https://doi.org/10.11005/jbm.2019.26.1.31

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Melo TG, da Assumpcao LV, Santos Ade O, Zantut-Wittmann DE (2015) Low BMI and low TSH value as risk factors related to lower bone mineral density in postmenospausal women under levothyroxine therapy for differentiated thyroid carcinoma. Thyroid Res 8:7. https://doi.org/10.1186/s13044-015-0019-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang P, Xi H, Yan R (2018) Effects of thyrotropin suppression on lumbar bone mineral density in postmenopausal women with differentiated thyroid carcinoma. Onco Targets Ther 11:6687–6692. https://doi.org/10.2147/ott.S171282

    Article  PubMed  PubMed Central  Google Scholar 

  45. Heemstra KA, Hamdy NA, Romijn JA, Smit JW (2006) The effects of thyrotropin-suppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Thyroid 16(6):583–591. https://doi.org/10.1089/thy.2006.16.583

    Article  CAS  PubMed  Google Scholar 

  46. Soydal C, Ozkan E, Nak D, Elhan AH, Kucuk NO, Kir MK (2019) Risk factors for predicting osteoporosis in patients who receive thyrotropin suppressive levothyroxine treatment for differentiated thyroid carcinoma. Mol Imaging Radionucl Ther 28(2):69–75. https://doi.org/10.4274/mirt.galenos.2019.89410

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang LY, Smith AW, Palmer FL, Tuttle RM, Mahrous A, Nixon IJ, Patel SG, Ganly I, Fagin JA, Boucai L (2015) Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid 25(3):300–307. https://doi.org/10.1089/thy.2014.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim MK, Yun KJ, Kim MH, Lim DJ, Kwon HS, Song KH, Kang MI, Baek KH (2015) The effects of thyrotropin-suppressing therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Bone 71:101–105. https://doi.org/10.1016/j.bone.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  49. Guo CY, Weetman AP, Eastell R (1997) Longitudinal changes of bone mineral density and bone turnover in postmenopausal women on thyroxine. Clin Endocrinol (Oxf) 46(3):301–307. https://doi.org/10.1046/j.1365-2265.1997.1280950.x

    Article  CAS  Google Scholar 

  50. Sugitani I, Fujimoto Y (2011) Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: a prospective controlled study. Surgery 150(6):1250–1257. https://doi.org/10.1016/j.surg.2011.09.013

    Article  PubMed  Google Scholar 

  51. Papaleontiou M, Banerjee M, Reyes-Gastelum D, Hawley ST, Haymart MR (2019) Risk of osteoporosis and fractures in patients with thyroid cancer a case-control study in U.S veterans. Oncologis. 24(9):1166–1173

    Article  CAS  Google Scholar 

  52. Wang MY, Han ZQ, Gong XW, Li Q, Ma J (2020) TSH-suppressive therapy can reduce bone mineral density in patients with differentiated thyroid carcinoma a meta-analysis. Eur Rev Med Pharmacol Sci 24(2):922–929. https://doi.org/10.26355/eurrev_202001_20077

    Article  PubMed  Google Scholar 

  53. Tsourdi E, Rijntjes E, Kohrle J, Hofbauer LC, Rauner M (2015) Hyperthyroidism and hypothyroidism in male mice and their effects on bone mass, bone turnover, and the wnt inhibitors sclerostin and dickkopf-1. Endocrinology 156(10):3517–3527. https://doi.org/10.1210/en.2015-1073

    Article  CAS  PubMed  Google Scholar 

  54. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530. https://doi.org/10.1002/jbmr.2176

    Article  PubMed  Google Scholar 

  55. McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJM, Fujita Y, Glüer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren Ö, Lorentzon M, Mellström D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to frax. J Bone Miner Res 31(5):940–948. https://doi.org/10.1002/jbmr.2734

    Article  PubMed  Google Scholar 

  56. Ulivieri FM, Silva BC, Sardanelli F, Hans D, Bilezikian JP, Caudarella R (2014) Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine 47(2):435–448. https://doi.org/10.1007/s12020-014-0280-4

    Article  CAS  PubMed  Google Scholar 

  57. Moon JH, Kim KM, Oh TJ, Choi SH, Lim S, Park YJ, Park DJ, Jang HC (2017) The effect of tsh suppression on vertebral trabecular bone scores in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 102(1):78–85. https://doi.org/10.1210/jc.2016-2740

    Article  PubMed  Google Scholar 

  58. De Mingo Dominguez ML, Guadalix Iglesias S, Martin-Arriscado Arroba C, Lopez Alvarez B, Martinez Diaz-Guerra G, Martinez-Pueyo JI, Ferrero Herrero E, Hawkins Carranza F (2018) Low trabecular bone score in postmenopausal women with differentiated thyroid carcinoma after long-term TSH suppressive therapy. Endocrine 62(1):166–173. https://doi.org/10.1007/s12020-018-1671-8

    Article  CAS  PubMed  Google Scholar 

  59. Blum MR, Bauer DC, Collet TH, Fink HA, Cappola AR, da Costa BR, Wirth CD, Peeters RP, Asvold BO, den Elzen WP, Luben RN, Imaizumi M, Bremner AP, Gogakos A, Eastell R, Kearney PM, Strotmeyer ES, Wallace ER, Hoff M, Ceresini G, Rivadeneira F, Uitterlinden AG, Stott DJ, Westendorp RG, Khaw KT, Langhammer A, Ferrucci L, Gussekloo J, Williams GR, Walsh JP, Juni P, Aujesky D, Rodondi N (2015) Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313(20):2055–2065. https://doi.org/10.1001/jama.2015.5161

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yan Z, Huang H, Li J, Wang J (2016) Relationship between subclinical thyroid dysfunction and the risk of fracture: a meta-analysis of prospective cohort studies. Osteoporos Int 27(1):115–125. https://doi.org/10.1007/s00198-015-3221-z

    Article  CAS  PubMed  Google Scholar 

  61. Garin MC, Arnold AM, Lee JS, Robbins J, Cappola AR (2014) Subclinical thyroid dysfunction and hip fracture and bone mineral density in older adults: the cardiovascular health study. J Clin Endocrinol Metab 99(8):2657–2664. https://doi.org/10.1210/jc.2014-1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vadiveloo T, Donnan PT, Cochrane L, Leese GP (2011) The thyroid epidemiology, audit, and research study (tears) morbidity in patients with endogenous subclinical hyperthyroidism. J Clin Endocrinol Metab 96(5):1344–1351. https://doi.org/10.1210/jc.2010-2693

    Article  CAS  PubMed  Google Scholar 

  63. Segna D, Bauer DC, Feller M, Schneider C, Fink HA, Aubert CE, Collet TH, da Costa BR, Fischer K, Peeters RP, Cappola AR, Blum MR, van Dorland HA, Robbins J, Naylor K, Eastell R, Uitterlinden AG, Rivadeneira Ramirez F, Gogakos A, Gussekloo J, Williams GR, Schwartz A, Cauley JA, Aujesky DA, Bischoff-Ferrari HA, Rodondi N (2018) Association between subclinical thyroid dysfunction and change in bone mineral density in prospective cohorts. J Intern Med 283(1):56–72. https://doi.org/10.1111/joim.12688

    Article  CAS  PubMed  Google Scholar 

  64. Siru R, Alfonso H, Chubb SAP, Golledge J, Flicker L, Yeap BB (2018) Subclinical thyroid dysfunction and circulating thyroid hormones are not associated with bone turnover markers or incident hip fracture in older men. Clin Endocrinol (Oxf) 89(1):93–99. https://doi.org/10.1111/cen.13615

    Article  CAS  Google Scholar 

  65. Wirth CD, Blum MR, da Costa BR, Baumgartner C, Collet TH, Medici M, Peeters RP, Aujesky D, Bauer DC, Rodondi N (2014) Subclinical thyroid dysfunction and the risk for fractures a systematic review and meta-analysis. Ann Intern Med 161(3):189–199. https://doi.org/10.7326/m14-0125

    Article  PubMed  PubMed Central  Google Scholar 

  66. Flynn RW, Bonellie SR, Jung RT, MacDonald TM, Morris AD, Leese GP (2010) Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J Clin Endocrinol Metab 95(1):186–193. https://doi.org/10.1210/jc.2009-1625

    Article  CAS  PubMed  Google Scholar 

  67. Bauer DC, Ettinger B, Nevitt MC, Stone KL (2001) Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med 134(7):561–568. https://doi.org/10.7326/0003-4819-134-7-200104030-00009

    Article  CAS  PubMed  Google Scholar 

  68. Abrahamsen B, Jorgensen HL, Laulund AS, Nybo M, Brix TH, Hegedus L (2014) Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures-the OPENTHYRO register cohort. J Bone Miner Res 29(9):2040–2050. https://doi.org/10.1002/jbmr.2244

    Article  CAS  PubMed  Google Scholar 

  69. Lee JS, Buzkova P, Fink HA, Vu J, Carbone L, Chen Z, Cauley J, Bauer DC, Cappola AR, Robbins J (2010) Subclinical thyroid dysfunction and incident hip fracture in older adults. Arch Intern Med 170(21):1876–1883. https://doi.org/10.1001/archinternmed.2010.424

    Article  PubMed  PubMed Central  Google Scholar 

  70. Waring AC, Harrison S, Fink HA, Samuels MH, Cawthon PM, Zmuda JM, Orwoll ES, Bauer DC (2013) A prospective study of thyroid function bone loss and fractures in older men the MrOS study. J Bone Miner Res 28(3):472–479. https://doi.org/10.1002/jbmr.1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Virgini VS, Rodondi N, Cawthon PM, Harrison SL, Hoffman AR, Orwoll ES, Ensrud KE, Bauer DC (2015) Subclinical thyroid dysfunction and frailty among older men. J Clin Endocrinol Metab 100(12):4524–4532. https://doi.org/10.1210/jc.2015-3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures a population-based study in Rochester Minnesota, 1985–1989. J Bone Miner Res 7(2):221–227. https://doi.org/10.1002/jbmr.5650070214

    Article  CAS  PubMed  Google Scholar 

  73. Adachi JD, Adami S, Gehlbach S, Anderson FA Jr, Boonen S, Chapurlat RD, Compston JE, Cooper C, Delmas P, Diez-Perez A, Greenspan SL, Hooven FH, LaCroix AZ, Lindsay R, Netelenbos JC, Wu O, Pfeilschifter J, Roux C, Saag KG, Sambrook PN, Silverman S, Siris ES, Nika G, Watts NB (2010) Impact of prevalent fractures on quality of life baseline results from the global longitudinal study of osteoporosis in women. Mayo Clin Proc 85(9):806–813. https://doi.org/10.4065/mcp.2010.0082

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jalava T, Sarna S, Pylkkanen L, Mawer B, Kanis JA, Selby P, Davies M, Adams J, Francis RM, Robinson J, McCloskey E (2003) Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res 18(7):1254–1260. https://doi.org/10.1359/jbmr.2003.18.7.1254

    Article  PubMed  Google Scholar 

  75. Reverter JL, Colomé E, Holgado S, Aguilera E, Soldevila B, Mateo L, Sanmartí A (2010) Bone mineral density and bone fracture in male patients receiving long-term suppressive levothyroxine treatment for differentiated thyroid carcinoma. Endocr 37(3):467–472. https://doi.org/10.1007/s12020-010-9339-z

    Article  CAS  Google Scholar 

  76. Vera L, Gay S, Campomenosi C, Paolino S, Pera G, Monti E, Mortara L, Seriolo B, Giusti M (2016) Ten-year estimated risk of bone fracture in women with differentiated thyroid cancer under TSH-suppressive levothyroxine therapy. Endokrynologia Polska 67(4):350–358. https://doi.org/10.5603/EP.a2016.0046

    Article  CAS  PubMed  Google Scholar 

  77. Mazziotti G, Formenti AM, Frara S, Olivetti R, Banfi G, Memo M, Maroldi R, Giubbini R, Giustina A (2018) High prevalence of radiological vertebral fractures in women on thyroid-stimulating hormone-suppressive therapy for thyroid carcinoma. J Clin Endocrinol Metab 103(3):956–964. https://doi.org/10.1210/jc.2017-01986

    Article  PubMed  Google Scholar 

  78. Prince RL, Lewis JR, Lim WH, Wong G, Wilson KE, Khoo BC, Zhu K, Kiel DP, Schousboe JT (2019) Adding lateral spine imaging for vertebral fractures to densitometric screening improving ascertainment of patients at high risk of incident osteoporotic fractures. J Bone Miner Res 34(2):282–289. https://doi.org/10.1002/jbmr.3595

    Article  PubMed  Google Scholar 

  79. Osorio M, Moubayed SP, Su H, Urken ML (2017) Systematic review of site distribution of bone metastases in differentiated thyroid cancer. Head Neck 39(4):812–818. https://doi.org/10.1002/hed.24655

    Article  PubMed  Google Scholar 

  80. Farooki A, Leung V, Tala H, Tuttle RM (2012) Skeletal-related events due to bone metastases from differentiated thyroid cancer. J Clin Endocrinol Metab 97(7):2433–2439. https://doi.org/10.1210/jc.2012-1169

    Article  CAS  PubMed  Google Scholar 

  81. Choksi P, Papaleontiou M, Guo C, Worden F, Banerjee M, Haymart M (2017) Skeletal complications and mortality in thyroid cancer a population-based study. J Clin Endocrinol Metab 102(4):1254–1260. https://doi.org/10.1210/jc.2016-3906

    Article  PubMed  PubMed Central  Google Scholar 

  82. McLeod DS (2014) Thyrotropin in the development and management of differentiated thyroid cancer. Endocrinol Metab Clin North Am 43(2):367–383. https://doi.org/10.1016/j.ecl.2014.02.012

    Article  PubMed  Google Scholar 

  83. Manzardo OA, Cellini M, Indirli R, Dolci A, Colombo P, Carrone F, Lavezzi E, Mantovani G, Mazziotti G, Arosio M, Lania AGA (2020) TNM 8th edition in thyroid cancer staging is there an improvement in predicting recurrence. Endocr Relat Cancer. https://doi.org/10.1530/erc-19-0412

    Article  PubMed  Google Scholar 

  84. Schneider P, Schneider R, Schneider M, Reiners C (2015) Letter to the editor regarding the article "thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ata low- and intermediate-risk patients with differentiated thyroid carcinoma". Thyroid 25(11):1267–1268. https://doi.org/10.1089/thy.2015.0201

    Article  PubMed  Google Scholar 

  85. Kim HI, Jang HW, Ahn HS, Ahn S, Park SY, Oh YL, Hahn SY, Shin JH, Kim JH, Kim JS, Chung JH, Kim TH, Kim SW (2018) High serum tsh level is associated with progression of papillary thyroid microcarcinoma during active surveillance. J Clin Endocrinol Metab 103(2):446–451. https://doi.org/10.1210/jc.2017-01775

    Article  PubMed  Google Scholar 

  86. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S (2013) Executive summary of the 2013 international society for clinical densitometry position development conference on bone densitometry. J Clin Densitom 16(4):455–466. https://doi.org/10.1016/j.jocd.2013.08.004

    Article  PubMed  Google Scholar 

  87. Kanis JA, Cooper C, Rizzoli R, Reginster JY (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30(1):3–44. https://doi.org/10.1007/s00198-018-4704-5

    Article  CAS  PubMed  Google Scholar 

  88. Marques A, Ferreira RJ, Santos E, Loza E, Carmona L, da Silva JA (2015) The accuracy of osteoporotic fracture risk prediction tools: a systematic review and meta-analysis. Ann Rheum Dis 74(11):1958–1967. https://doi.org/10.1136/annrheumdis-2015-207907

    Article  PubMed  Google Scholar 

  89. Adami S, Bianchi G, Brandi ML, Di Munno O, Frediani B, Gatti D, Giannini S, Girasole G, Minisola G, Minisola S, Nuti R, Pedrazzoni M, Rossini M, Varenna M (2010) Validation and further development of the WHO 10-year fracture risk assessment tool in Italian postmenopausal women: project rationale and description. Clin Exp Rheumatol 28(4):561–570

    CAS  PubMed  Google Scholar 

  90. Engelke K, Stampa B, Steiger P, Fuerst T, Genant HK (2019) Automated quantitative morphometry of vertebral heights on spinal radiographs: comparison of a clinical workflow tool with standard 6-point morphometry. Arch Osteoporos 14(1):18. https://doi.org/10.1007/s11657-019-0577-2

    Article  PubMed  Google Scholar 

  91. Clark EM, Carter L, Gould VC, Morrison L, Tobias JH (2014) Vertebral fracture assessment (VFA) by lateral DXA scanning may be cost-effective when used as part of fracture liaison services or primary care screening. Osteoporos Int 25(3):953–964. https://doi.org/10.1007/s00198-013-2567-3

    Article  CAS  PubMed  Google Scholar 

  92. Cellini M, Piccini S, Ferrante G, Carrone F, Olivetti R, Cicorella N, Aroldi M, Pini D, Centanni M, Lania AG, Mazziotti G (2020) Secondary hyperparathyroidism and thoracic vertebral fractures in heart failure middle-aged patients a 3-year prospective study. J Endocrinol Invest. https://doi.org/10.1007/s40618-020-01237-1

    Article  PubMed  Google Scholar 

  93. Mazziotti G, Rodari M, Gelardi F, Tosi G, Zucali PA, Pepe G, Chiti A (2020) Morphometric vertebral fractures in patients with castration-resistant prostate cancer undergoing treatment with radium-223 a longitudinal study in the real-life clinical practice. Endocr. https://doi.org/10.1007/s12020-020-02277-6

    Article  Google Scholar 

  94. Mazziotti G, Porcelli T, Patelli I, Vescovi PP, Giustina A (2010) Serum TSH values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone 46(3):747–751. https://doi.org/10.1016/j.bone.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  95. Williams GR (2014) Is prophylactic anti-resorptive therapy required in thyroid cancer patients receiving TSH-suppressive treatment with thyroxine? J Endocrinol Invest 37(8):775–779. https://doi.org/10.1007/s40618-014-0110-9

    Article  PubMed  Google Scholar 

  96. Balena R, Markatos A, Gentile M, Masarachia P, Seedor JG, Rodan GA, Yamamoto M (1993) The aminobisphosphonate alendronate inhibits bone loss induced by thyroid hormone in the rat comparison between effects on tibiae and vertebrae. Bone 14(3):499–504. https://doi.org/10.1016/8756-3282(93)90186-e

    Article  CAS  PubMed  Google Scholar 

  97. Rosen HN, Sullivan EK, Middlebrooks VL, Zeind AJ, Gundberg C, Dresner-Pollak R, Maitland LA, Hock JM, Moses AC, Greenspan SL (1993) Parenteral pamidronate prevents thyroid hormone-induced bone loss in rats. J Bone Miner Res 8(10):1255–1261. https://doi.org/10.1002/jbmr.5650081014

    Article  CAS  PubMed  Google Scholar 

  98. Panebianco P, Rosso D, Destro G, Scarpinato RA, Tropea S, Rizzo A, Russo MS, Motta M, Di Stefano F, Mazzarella R, Maugeri D (1997) Use of disphosphonates in the treatment of osteoporosis in thyroidectomized patients on levothyroxin replacement therapy. Arch Gerontol Geriatr 25(2):219–225. https://doi.org/10.1016/s0167-4943(97)00013-7

    Article  CAS  PubMed  Google Scholar 

  99. Panico A, Lupoli GA, Fonderico F, Marciello F, Martinelli A, Assante R, Lupoli G (2009) Osteoporosis and thyrotropin-suppressive therapy reduced effectiveness of alendronate. Thyroid 19(5):437–442. https://doi.org/10.1089/thy.2008.0428

    Article  CAS  PubMed  Google Scholar 

  100. Sharma A, Einstein AJ, Vallakati A, Arbab-Zadeh A, Walker MD, Mukherjee D, Homel P, Borer JS, Lichstein E (2014) Risk of atrial fibrillation with use of oral and intravenous bisphosphonates. Am J Cardiol 113(11):1815–1821. https://doi.org/10.1016/j.amjcard.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  101. Abonowara A, Quraishi A, Sapp JL, Alqambar MH, Saric A, O'Connell CM, Rajaraman MM, Hart RD, Imran SA (2012) Prevalence of atrial fibrillation in patients taking TSH suppression therapy for management of thyroid cancer. Clin Invest Med 35(3):E152–156. https://doi.org/10.25011/cim.v35i3.16591

    Article  PubMed  Google Scholar 

  102. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29(2):155–192. https://doi.org/10.1210/er.2007-0014

    Article  CAS  PubMed  Google Scholar 

  103. Murphy E, Williams GR (2004) The thyroid and the skeleton. Clin Endocrinol (Oxf) 61(3):285–298. https://doi.org/10.1111/j.1365-2265.2004.02053.x

    Article  CAS  Google Scholar 

  104. Harvey CB, O'Shea PJ, Scott AJ, Robson H, Siebler T, Shalet SM, Samarut J, Chassande O, Williams GR (2002) Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol Genet Metab 75(1):17–30. https://doi.org/10.1006/mgme.2001.3268

    Article  CAS  PubMed  Google Scholar 

  105. Kisakol G, Kaya A, Gonen S, Tunc R (2003) Bone and calcium metabolism in subclinical autoimmune hyperthyroidism and hypothyroidism. Endocr J 50(6):657–661. https://doi.org/10.1507/endocrj.50.657

    Article  CAS  PubMed  Google Scholar 

  106. Adami S, Giannini S, Bianchi G, Sinigaglia L, Di Munno O, Fiore CE, Minisola S, Rossini M (2009) Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos Int 20(2):239–244. https://doi.org/10.1007/s00198-008-0650-y

    Article  CAS  PubMed  Google Scholar 

  107. Orloff LA, Wiseman SM, Bernet VJ, Fahey TJ 3rd, Shaha AR, Shindo ML, Snyder SK, Stack BC Jr, Sunwoo JB, Wang MB (2018) American thyroid association statement on postoperative hypoparathyroidism diagnosis, prevention, and management in adults. Thyroid 28(7):830–841. https://doi.org/10.1089/thy.2017.0309

    Article  PubMed  Google Scholar 

  108. Formenti AM, Tecilazich F, Giubbini R, Giustina A (2019) Risk of vertebral fractures in hypoparathyroidism. Rev Endocr Metab Disord 20(3):295–302. https://doi.org/10.1007/s11154-019-09507-x

    Article  CAS  PubMed  Google Scholar 

  109. Brancatella A, Marcocci C (2020) TSH suppressive therapy and bone. Endocr Connect. https://doi.org/10.1530/ec-20-0167

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V, Bagur A, Malouf-Sierra J, Lakatos P, Fahrleitner-Pammer A, Lespessailles E, Minisola S, Body JJ, Geusens P, Moricke R, Lopez-Romero P (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO) a multicentre double-blind double-dummy randomised controlled trial. Lancet 391(10117):230–240. https://doi.org/10.1016/s0140-6736(17)32137-2

    Article  CAS  PubMed  Google Scholar 

  111. Mana DL, Zanchetta MB, Zanchetta JR (2017) Retreatment with teriparatide our experience in three patients with severe secondary osteoporosis. Osteoporos Int 28(4):1491–1494. https://doi.org/10.1007/s00198-016-3869-z

    Article  CAS  PubMed  Google Scholar 

  112. Leder BZ, Tsai JN, Uihlein AV, Wallace PM, Lee H, Neer RM, Burnett-Bowie SA (2015) Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study) extension of a randomised controlled trial. Lancet 386(9999):1147–1155. https://doi.org/10.1016/s0140-6736(15)61120-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mauch JT, Carr CM, Cloft H, Diehn FE (2018) Review of the imaging features of benign osteoporotic and malignant vertebral compression fractures. AJNR Am J Neuroradiol 39(9):1584–1592. https://doi.org/10.3174/ajnr.A5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. D'Oronzo S, Brown J, Coleman R (2017) The role of biomarkers in the management of bone-homing malignancies. J Bone Oncol 9:1–9. https://doi.org/10.1016/j.jbo.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  115. Orita Y, Sugitani I, Toda K, Manabe J, Fujimoto Y (2011) Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Thyroid 21(1):31–35. https://doi.org/10.1089/thy.2010.0169

    Article  CAS  PubMed  Google Scholar 

  116. Vitale G, Fonderico F, Martignetti A, Caraglia M, Ciccarelli A, Nuzzo V, Abbruzzese A, Lupoli G (2001) Pamidronate improves the quality of life and induces clinical remission of bone metastases in patients with thyroid cancer. Br J Cancer 84(12):1586–1590. https://doi.org/10.1054/bjoc.2001.1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lipton A, Fizazi K, Stopeck AT, Henry DH, Smith MR, Shore N, Martin M, Vadhan-Raj S, Brown JE, Richardson GE, Saad F, Yardley DA, Zhou K, Balakumaran A, Braun A (2016) Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Euro J Cancer 53:75–83. https://doi.org/10.1016/j.ejca.2015.09.011

    Article  CAS  Google Scholar 

Download references

Funding

This review did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lania.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This review article contains no original data using human or animal subjects.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cellini, M., Rotondi, M., Tanda, M.L. et al. Skeletal health in patients with differentiated thyroid carcinoma. J Endocrinol Invest 44, 431–442 (2021). https://doi.org/10.1007/s40618-020-01359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01359-6

Keywords

Navigation