Skip to main content
Log in

Electrophysiological features in acromegaly: re-thinking the arrhythmic risk?

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Acromegaly is disease associated with a specific cardiomyopathy. Hitherto, it has been widely understood that acromegaly carries an increased risk of arrhythmia.

Purpose

In this review we show that evidences are limited to a small number of case–control studies that reported increased rates of premature ventricular beats (PVB) but no more significant arrhythmia. In contrast, there are several studies that have reported impaired preclinical markers of arrhythmia, including reduced heart rate variability, increased late potentials, QT interval dispersion, impaired heart rate recovery after physical exercise and left ventricular dysynchrony. Whilst these markers are associated with an adverse cardiovascular prognosis in the general population, they do not have a high independent positive predictive accuracy for arrhythmia. In acromegaly, case reports have described sudden cardiac death, ventricular tachyarrhythmia and advanced atrio-ventricular block that required implantation of a cardio-defibrillator or permanent pacemaker. Treatment with somatostatin analogues can reduce cardiac dysrhythmia in some cases by reducing heart rate, PVBs and QT interval. Pegvisomant reduces mean heart rate. Pasireotide is associated with QT prolongation. In the absence of good quality data on risk of arrhythmia in acromegaly, the majority of position statements and guidelines suggest routine 12-lead electrocardiography (ECG) and transthoracic echocardiography (TTE) in every patient at diagnosis and then follow up dependent on initial findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Melmed S (2009) Acromegaly pathogenesis and treatment. J Clin Investig 119(3189):3202

    Google Scholar 

  2. Melmed S (2006) Medical progress: acromegaly. N Engl J Med 355:2558–2573

    CAS  PubMed  Google Scholar 

  3. Gadelha MR, Kasuki L, Lim DST, Fleseriu M (2019) Systemic complications of acromegaly and the impact of the current treatment landscape: an update. Endocr Rev 40(1):268–332. https://doi.org/10.1210/er.2018-00115

    Article  PubMed  Google Scholar 

  4. Bolfi F, Neves AF, Boguszewski CL, Nunes-Nogueira VS (2018) Mortality in acromegaly decreased in the last decade: a systematic review and meta-analysis. Eur J Endocrinol 179(1):59–71

    CAS  PubMed  Google Scholar 

  5. Maffei P, Dassie F, Wennberg A, Parolin M, Vettor R (2019) The Endothelium in Acromegaly. Front Endocrinol (Lausanne) 24(10):437. https://doi.org/10.3389/fendo.2019.00437

    Article  Google Scholar 

  6. Parolin M, Dassie F, Martini C, Mioni R, Russo L, Fallo F, Rossato M, Vettor R, Maffei P, Pagano C (2018) Preclinical markers of atherosclerosis in acromegaly: a systematic review and meta-analysis. Pituitary 21(6):653–662. https://doi.org/10.1007/s11102-018-0911-5

    Article  CAS  PubMed  Google Scholar 

  7. Pivonello R, Auriemma RS, Grasso LF, Pivonello C, Simeoli C, Patalano R, Galdiero M, Colao A (2017) Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities. Pituitary 20:46–62

    PubMed  Google Scholar 

  8. Mosca S, Paolillo S, Colao A, Bossone E, Cittadini A, Iudice FL, Parente A, Conte S, Rengo G, Leosco D, Trimarco B, Filardi PP (2013) Cardiovascular involvement in patients affected by acromegaly: an appraisal. Int J Cardiol 167:1712–1718

    PubMed  Google Scholar 

  9. Ramos-Leví AM, Marazuela M (2017) Cardiovascular comorbidities in acromegaly: an update on their diagnosis and management. Endocrine 55(2):346–359

    PubMed  Google Scholar 

  10. Ono K, Iijima T (2010) Cardiac T-type Ca2+ channels in the heart. J Mol Cell Cardiol 48(1):65–70

    CAS  PubMed  Google Scholar 

  11. Xu XP, Best PM (1990) Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors. Proc Natl Acad Sci 87(12):4655–4659

    CAS  PubMed  Google Scholar 

  12. Xu XP, Best PM (1991) Decreased transient outward K+ current in ventricular myocytes from acromegalic rats. Am J Physiol Heart Circ Physiol 260(3):H935–H942

    CAS  Google Scholar 

  13. Guo WE, Kada KE, Kamiya KA, Toyama JU (1997) IGF-I regulates K (+)-channel expression of cultured neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 272(6):H2599–H2606

    CAS  Google Scholar 

  14. Cittadini A, Ishiguro Y, Str¨omer H, Spindler M, Moses AC, Clark R, Douglas PS, Ingwall JS, Morgan JP (1998) Insulin-like growth factor-1 but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca2+ through a wortmannin-sensitive pathway: studies in rat and ferret isolated muscles. Circ Res 83(1):50–59

    CAS  PubMed  Google Scholar 

  15. Strömer H, Cittadini A, Douglas PS, Morgan JP (1996) Exogenously administered growth hormone and insulin-like growth factor-I alter intracellular Ca2+ handling and enhance cardiac performance. In vitro evaluation in the isolated isovolumic buffer-perfused rat heart. Circ Res 79(2):227–236

    PubMed  Google Scholar 

  16. von Lewinski D, Voss K, H¨ulsmann S, K¨ogler H, Pieske B (2003) Insulin-like growth factor-1 exerts Ca2+-dependent positive inotropic effects in failing human myocardium. Circ Res 92(2):169–176

    Google Scholar 

  17. Solem ML, Thomas AP (1998) Modulation of cardiac Ca2+ channels by IGF1. Biochem Biophys Res Commun 252(1):151–155

    CAS  PubMed  Google Scholar 

  18. Kinugawa S, Tsutsui H, Ide T, Nakamura R, Arimura KI, Egashira K, Takeshita A (1999) Positive inotropic effect of insulin-like growth factor-1 on normal and failing cardiac myocytes. Cardiovasc Res 43(1):157–164

    CAS  PubMed  Google Scholar 

  19. Ren J, Walsh MF, Hamaty M, Sowers JR, Brown RA (1998) Altered inotropic response to IGF-I in diabetic rat heart: influence of intracellular Ca2+ and NO. Am J Physiol Heart Circ Physiol 275(3):H823–H830

    CAS  Google Scholar 

  20. Kahaly G, Olshausen KV, Mohr-Kahaly S, Erbel R, Boor S, Beyer J, Meyer J (1992) Arrhythmia profile in acromegaly. Eur Heart J 13:51–56

    CAS  PubMed  Google Scholar 

  21. Vitale G, Pivonello R, Lombardi G, Colao A (2004) Cardiac abnormalities in acromegaly. Treat Endocrinol 3(5):309–318

    PubMed  Google Scholar 

  22. Matturri L, Varesi C, Nappo A, Cuttin MS, Rossi L (1998) Sudden cardiac death in acromegaly. Anatomopathological observation of a case. Minerva Med 89(7–8):287–291

    CAS  PubMed  Google Scholar 

  23. Yokota F, Arima H, Hirano M, Uchikawa T, Inden Y, Nagatani T, Oiso Y (2010) Normalisation of plasma growth hormone levels improved cardiac dysfunction due to acromegalic cardiomyopathy with severe fibrosis. Case Rep 2010:1220092559

    Google Scholar 

  24. Rossi L, Thiene G, Caregaro L, Giordano R, Lauro S (1977) Dysrhythmias and sudden death in acromegalic heart disease. Clinicopathol Study Chest 72:495–498

    CAS  Google Scholar 

  25. Warszawski L, Kasuki L, Sá R, Dos Santos Silva CM, Volschan I, Gottlieb I, Pedrosa RC, Gadelha MR (2016) Low frequency of cardiac arrhythmias and lack of structural heart disease in medically-naïve acromegaly patients: a prospective study at baseline and after 1 year of somatostatin analogs treatment. Pituitary 19(6):582–589

    CAS  PubMed  Google Scholar 

  26. Lown B, Wolf M (1971) Approaches to sudden death from coronary heart disease. Circulation 44:130–142

    CAS  PubMed  Google Scholar 

  27. Rodrigues EA, Caruana MP, Lahiri A, Nabarro JD, Jacobs HS, Raftery EB (1989) Subclinical cardiac dysfunction in acromegaly evidence for a specific disease of heart muscle. Br Heart J 62:185–194

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Colao A, Marzullo P, Di Somma C, Lombardi G (2001) Growth hormone and the heart. Clin Endocrinol 54(2):137–154

    CAS  Google Scholar 

  29. Colao A, Ferone D, Marzullo P, Lombardi G (2004) Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endoc Rev 25(1):102–152

    CAS  Google Scholar 

  30. Arias MA, Pachon M, Rodriguez-Padial L (2011) Ventricular tachycardia in acromegaly [16]. Rev Port Cardiol 30(02):223–226

    PubMed  Google Scholar 

  31. Viani S, Zucchelli G, Paperini L, Soldati E, Segreti L, Di Cori A, Menichetti F, Coluccia G, Andreini D, Branchitta G, Bongiorni MG (2016) Subcutaneous Implantable Defibrillator in an acromegalic pregnant woman for secondary prevention of sudden cardiac death: When (2) technologies save (2) lives. Int J Cardiol 15(223):313

    Google Scholar 

  32. Tan TT, Gangaram HB, Yusoff K, Khalid BA (1992) Third degree heart block in acromegaly. Postgrad Med J 68(799):389

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Maffei P, Martini C, Mioni R, DeCarlo E, Vettor R, Sicolo N (2004) Emergency pacemaker implantation in acromegaly. Int J Cardiol 97(1):161–164

    PubMed  Google Scholar 

  34. An Z, He YQ, Liu GH, Ge LL, Zhang WQ (2015) Malignant ventricular tachycardia in acromegaly: a case report. Sao Paulo Med J 133(1):55–59

    PubMed  Google Scholar 

  35. Cryer PE (1975) Plasma norepinephrine and epinephrine in acromegaly. J Clin Endocrinol Metab 41(3):542–545

    CAS  PubMed  Google Scholar 

  36. Van Loon GR (1979) Abnormal plasma catecholamine responses in acromegalics. J Clin Endocrinol Metab 48(5):784–789

    PubMed  Google Scholar 

  37. Rozenberg I, Manchon P, Sabatier C, Hazard J, Lhoste F (1985) Effects of thyrotrophin-releasing hormone on plasma catecholamine levels in acromegalics. Acta Endocrinol 109(1):19–24

    CAS  Google Scholar 

  38. Bondanelli M, Ambrosio MR, Franceschetti P, Margutti A, Trasforini G, Degli Uberti EC (1999) Diurnal rhythm of plasma catecholamines in acromegaly. J Clin Endocrinol Metab 84(7):2458–2467

    CAS  PubMed  Google Scholar 

  39. Andersson IJ, Barlind A, Nyström HC, Olsson B, Skøtt O, Mobini R, Johansson M, Bergström G (2004) Reduced sympathetic responsiveness as well as plasma and tissue noradrenaline concentration in growth hormone transgenic mice. Acta Physiol Scand 182(4):369–378

    CAS  PubMed  Google Scholar 

  40. Vanoli E, Schwartz PJ (1990) Sympathetic–parasympathetic interaction and sudden death. Basic Res Cardiol 85(Suppl 1):305–321

    PubMed  Google Scholar 

  41. Kamath MV, Fallen EL (1993) Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng 21:245–311

    CAS  PubMed  Google Scholar 

  42. Malik M, Camm AJ (1994) Heart rate variability and clinical cardiology. Br Heart J 71:3–6

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Comunello A, Dassie F, Martini C, De Carlo E, Mioni R, Battocchio M, Paoletta A, Fallo F, Vettor R, Maffei P (2015) Heart rate variability is reduced in acromegaly patients and improved by treatment with somatostatin analogues. Pituitary 18:525–534

    CAS  PubMed  Google Scholar 

  44. Resmini E, Casu M, Patrone V et al (2006) Sympathovagal imbalance in acromegalic patients. J Clin Endocrinol Metab 91:115–120

    CAS  PubMed  Google Scholar 

  45. Chemla D, Attal P, Maione L, Veyer AS, Mroue G, Baud D, Chanson P (2014) Impact of successful treatment of acromegaly on overnight heart rate variability and sleep apnea. J Clin Endocrinol Metab 99(8):2925–2931

    CAS  PubMed  Google Scholar 

  46. Guilleminault C, Poyares D, Rosa A, Huang YS (2005) Heart rate variability, sympathetic and vagal balance and EEG arousals in upper airway resistance and mild obstructive sleep apnea syndromes. Sleep Med 6:451–457

    PubMed  Google Scholar 

  47. Zhu K, Chemla D, Roisman G, Mao W, Bazizi S, Lefevre A, Escourrou P (2012) Overnight heart rate variability in patients with obstructive sleep apnoea: a time and frequency domain study. Clin Exp Pharmacol Physiol 39(11):901–908

    CAS  PubMed  Google Scholar 

  48. Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, Takeda H, Inoue M, Kamada T (1994) Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol 24(6):1529–1535

    CAS  PubMed  Google Scholar 

  49. Gamelin FX, Baquet G, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2009) Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol 105:731–738. https://doi.org/10.1007/s00421-008-0955-8

    Article  PubMed  Google Scholar 

  50. Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341(18):1351–1357

    CAS  PubMed  Google Scholar 

  51. Dural M, Kabakci G, Cinar N et al (2014) Assessment of cardiac autonomic functions by heart rate recovery, heart rate variability and QT dynamicity parameters in patients with acromegaly. Pituitary 17:163–170

    CAS  PubMed  Google Scholar 

  52. Dural M, Kabakcı G, Çınar N, Erbaş T, Canpolat U, Gürses KM, Şahiner L (2014) Assessment of cardiac autonomic functions by heart rate recovery, heart rate variability and QT dynamicity parameters in patients with acromegaly. Pituitary 17(2):163–170

    CAS  PubMed  Google Scholar 

  53. Maffei P, Martini C, Milanesi A, Corfini A, Mioni R, de Carlo E, Menegazzo C, Scanarini M, Vettor R, Federspil G, Sicolo N (2005) Late potentials and ventricular arrhythmias in acromegaly. Int J Cardiol 104(2):197–203

    PubMed  Google Scholar 

  54. Breithardt G, Cain ML, EL-Sherif N, Flowers NC, Hombach V, Janse M et al (1991) Standards of analysis of ventricular late potentials using high-resolution signal-averaged electrocardiography. J Am Coll Cardiol 17:999–1006

    CAS  PubMed  Google Scholar 

  55. Kulakowski P, Counihan PJ, Camm AJ, McKenna WJ (1993) The value oftime and frequency domain, and spectral temporal mapping analysisof the signal-averaged electrocardiogram in identification of patientswith hypertrophic cardiomyopthy at increased risk of sudden death. Eur Heart J 14:941–950

    CAS  PubMed  Google Scholar 

  56. Simson MB (1992) Noninvasive identification of patients at high risk forsudden cardiac death. Signal-averaged electrocardiography. Circulation 85(Supplement I):145–151

    Google Scholar 

  57. Herrmann BL, Bruch C, Saller B, Ferdin S, Dagres N, Ose C, Erbel R, Mann K (2001) Occurrence of ventricular late potentials in patients with active acromegaly. Clin Endocrinol (Oxf) 55(2):201–207

    CAS  Google Scholar 

  58. Bader H, Garrigue S, Lafitte S, Reuter S, Jaïs P, Haïssaguerre M, Bonnet J, Clementy J, Roudaut R (2004) Intra-left ventricular electromechanical asynchrony. A new independent predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol 43(2):248–256

    PubMed  Google Scholar 

  59. Yu CM, Zhang Q, Fung JW, Chan HC, Chan YS, Yip GW, Kong SL, Lin H, Zhang Y, Sanderson JE (2005) A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll Cardiol 45(5):677–684

    PubMed  Google Scholar 

  60. Kırış A, Erem C, Turan OE, Civan N, Kırış G, Nuhoğlu I, Ilter A, Ersöz HO, Mm K (2013) Left ventricular synchronicity is impaired in patients with active acromegaly. Endocrine 44(1):200–206. https://doi.org/10.1007/s12020-012-9859-9

    Article  CAS  PubMed  Google Scholar 

  61. Park SM, Kim YH, Choi JI, Pak HN, Kim YH, Shim WJ (2010) Left atrial electromechanical conduction time can predict six-month maintenance of sinus rhythm after electrical cardioversion in persistent atrial fibrillation by Doppler tissue echocardiography. J Am Soc Echocardiogr 23(3):309–314

    PubMed  Google Scholar 

  62. Yayla Ç, Canpolat U, Şahinarslan A, Özkan Ç, Altinova AE, Yayla KG, Akboğa MK, Eyiol A, Boyaci B (2015) The assessment of atrial electromechanical delay in patients with acromegaly. Can J Cardiol 31(8):1012–1018

    PubMed  Google Scholar 

  63. Day CP, McComb JM, Campbell RW (1990) QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. Heart 63(6):342–344

    CAS  Google Scholar 

  64. Unubol M, Eryilmaz U, Guney E, Ture M, Akgullu C (2013) QT dispersion in patients with acromegaly. Endocrine 43(2):419–423

    CAS  PubMed  Google Scholar 

  65. Mohamed AL, Yusoff K, Muttalif AR, Khalid BA (1999) Markers of ventricular tachyarrythmias in patients with acromegaly. Med J Malaysia 54(3):338–345

    CAS  PubMed  Google Scholar 

  66. Varkevisser R, Wijers SC, van der Heyden MA, Beekman JD, Meine M, Vos MA (2012) Beat-to-beat variability of repolarization as a new biomarker for proarrhythmia in vivo. Heart Rhythm 9(10):1718–1726

    PubMed  Google Scholar 

  67. Orosz A, Csajbók É, Czékus C, Gavallér H, Magony S, Valkusz Z, Várkonyi TT, Nemes A, Baczkó I, Forster T, Wittmann T (2015) Increased short-term beat-to-beat variability of QT interval in patients with acromegaly. PLoS ONE 10(4):e0125639

    PubMed  PubMed Central  Google Scholar 

  68. Hou ZY, Lin CI, Chiu TH, Chiang BN, Cheng KK, Ho LT (1987) Somatostatin effects in isolated human atrial fibres. J Mol Cell Cardiol 19(2):177–185

    CAS  PubMed  Google Scholar 

  69. DÃez J, Tamargo J (1987) Effect of somatostatin on 45Ca fluxes in guinea-pig isolated atria. Br J Pharmacol 90(2):309–314

    Google Scholar 

  70. Wiley JW, Uccioli L, Owyang C, Yamada T (1989) Somatostatin stimulates acetylcholine release in the canine heart. Am J Physiol 257(2 Pt 2):H483–H487

    CAS  PubMed  Google Scholar 

  71. Donald JA, O'Shea JE, Lillywhite HB (1990) Somatostatin and innervation of the heart of the snake Elaphe obsoleta. Am J Physiol 258(4 Pt 2):R1001–R1007

    CAS  PubMed  Google Scholar 

  72. Ghirlanda G, Santarelli P, Uccioli L, Sandric S, Bellocci F, Bianchini G, Cotroneo P, Greco AV (1986) Electrophysiologic effects of somatostatin in man. Peptides 1(7):265–266

    Google Scholar 

  73. Fatti LM, Scacchi M, Lavezzi E, Giraldi FP, De Martin M, Toja P, Michailidis G, Stramba-Badiale M, Cavagnini F (2006) Effects of treatment with somatostatin analogues on QT interval duration in acromegalic patients. Clin endocrinol 65(5):626–633

    CAS  Google Scholar 

  74. Suyama K, Uchida K, Tanaka T, Saito J, Noguchi Y, Nakamura S, TAtsuno I, Saito Y, Saeki N (2000) Octreotide improved ventricular arrhythmia in an acromegalic patient. Endocr J 47:S73–S75

    PubMed  Google Scholar 

  75. Tachibana H, Yamaguchi H, Abe S, Sato T, Inoue S, Abe S, Yamaki M, Kubota I (2003) Improvement of ventricular arrhythmia by octreotide treatment in acromegalic cardiomyopathy. Jpn Heart J 44(6):1027–1031

    PubMed  Google Scholar 

  76. Lombardi G, Colao A, Marzullo P, Biondi B, Palmieri E, Fazio S, Multicenter Italian Study Group on Lanreotide (2002) Improvement of left ventricular hypertrophy and arrhythmias after lanreotide-induced GH and IGF-I decrease in acromegaly. A prospective multi-center study. Jour endocrinol invest 25(11):971–976

    CAS  Google Scholar 

  77. Maison P, Tropeano AI, Macquin-Mavier I, Giustina A, Chanson P (2007) Impact of somatostatin analogs on the heart in acromegaly: a metaanalysis. J Clin Endocrinol Metab 92(5):1743–1747

    CAS  PubMed  Google Scholar 

  78. Erem C, Ersöz HÖ, Ukinç K, Avunduk AM, Hacihasanoglu A, Koçak M (2006) Acromegaly presenting with diabetic ketoacidosis, associated with retinitis pigmentosa and octreotide-induced bradycardia. Endocrine 30(1):145–149

    CAS  PubMed  Google Scholar 

  79. Herrington AM, George KW, Moulds CC (1998) Octreotide-induced bradycardia. Pharmacotherapy 18(2):413–416

    CAS  PubMed  Google Scholar 

  80. Lamberts SW, Van der Lely AJ, de Herder WW, Hofland LJ (1996) Octreotide. N Engl J Med 334(4):246–254

    CAS  PubMed  Google Scholar 

  81. Lima-Martínez MM, López-Méndez G, Mangupli R (2013) Bradicardia sinusal inducida por octreotide en un varón con acromegalia. Endocrinol Nutr 60:e7–e9

    PubMed  Google Scholar 

  82. Drugs@FDA: FDA approved drug products. Pasireotide. https://www.accessdata.fda.gov/ Accessed May 1, 2018

  83. Breitschaft A, Hu K, Darstein C, Ligueros-Saylan M, Jordaan P, Song D, Hudson M, Shah R (2014) Effects of subcutaneous pasireotide on cardiac repolarization in healthy volunteers: a single-center, phase i, randomized. Four-Way Crossover Study J Clin Pharmacol 54(1):75–86. https://doi.org/10.1002/jcph.213

    Article  CAS  PubMed  Google Scholar 

  84. MacKenzie Feder J, Bourdeau I, Vallette S, Beauregard H, Ste-Marie LG, Lacroix A (2014) Pasireotide monotherapy in Cushing's disease: a single-centre experience with 5-year extension of phase III Trial. Pituitary 17(6):519–529. https://doi.org/10.1007/s11102-013-0539-4

    Article  CAS  PubMed  Google Scholar 

  85. Petersenn S, Schopohl J, Barkan A, Mohideen P, Colao A, Abs R, Buchelt A, Ho YY, Hu K, Farrall AJ, Melmed S, Biller BM (2010) Pasireotide Acromegaly Study Group. Pasireotide (SOM230) demonstrates efficacy and safety in patients with acromegaly: a randomized, multicenter, phase II trial. J Clin Endocrinol Metab 95(6):2781–2789. https://doi.org/10.1210/jc.2009-2272

    Article  CAS  PubMed  Google Scholar 

  86. Petersenn S, Farrall AJ, De Block C, Melmed S, Schopohl J, Caron P, Cuneo R, Kleinberg D, Colao A, Ruffin M, Hermosillo Reséndiz K, Hughes G, Hu K, Barkan A (2014) Long-term efficacy and safety of subcutaneous pasireotide in acromegaly: results from an open-ended, multicenter. Phase II Ext Study Pituit 17(2):132–140. https://doi.org/10.1007/s11102-013-0478-0

    Article  CAS  Google Scholar 

  87. Buchfelder M, van der Lely AJ, Biller BMK, Webb SM, Brue T, Strasburger CJ, Ghigo E, Camacho-Hubner C, Pan K, Lavenberg J, Jönsson P, Hey-Hadavi JH (2018) Long-term treatment with pegvisomant: observations from 2090 acromegaly patients in ACROSTUDY. Eur J Endocrinol 179(6):419–427. https://doi.org/10.1530/EJE-18-0616

    Article  CAS  PubMed  Google Scholar 

  88. Auriemma RS, Pivonello R, De Martino MC, Cudemo G, Grasso LF, Galdiero M, Perone Y, Colao A (2012) Treatment with GH receptor antagonist in acromegaly: effect on cardiac arrhythmias. Eur J Endocrinol 168(1):15–22

    PubMed  Google Scholar 

  89. Maione L, Chanson P (2019) National acromegaly registries. Best Pract Res Clin Endocrinol Metab 33:101264 (pii: S1521-690X(19)30007-7)

    PubMed  Google Scholar 

  90. Giustina A, Casanueva FF, Cavagnini F, Chanson P, Clemmons D, Frohman LA, Gaillard R, Ho K, Jaquet P, Kleinberg DL, Lamberts SW, Lombardi G, Sheppard M, Strasburger CJ, Vance ML, Wass JA, Melmed S (2003) Pituitary Society and the European Neuroendocrine Association Diagnosis and treatment of acromegaly complications. J Endocrinol Invest 26(12):1242–1247

    CAS  PubMed  Google Scholar 

  91. Melmed S, Casanueva FF, Klibanski A, Bronstein MD, Chanson P, Lamberts SW, Strasburger CJ, Wass JA, Giustina A (2013) A consensus on the diagnosis and treatment of acromegaly complications. Pituitary 16(3):294–302. https://doi.org/10.1007/s11102-012-0420-x

    Article  CAS  PubMed  Google Scholar 

  92. Katznelson L, Atkinson J, Cook D, Ezzat S, Hamrahian A, Miller K (2011) American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly-2011 update. Endocr pract 17(Supplement 4):1–44

    PubMed  Google Scholar 

  93. Katznelson L, Laws ER, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951

    CAS  PubMed  Google Scholar 

  94. Bernabeu I, Aller J, Álvarez-Escolá C, Fajardo-Montañana C, Gálvez-Moreno Á, Guillín-Amarelle C, Sesmilo G (2018) Criteria for diagnosis and postoperative control of acromegaly, and screening and management of its comorbidities: expert consensus. Endocrinol Diabetes Nutr (English ed) 65(5):297–305

    Google Scholar 

  95. Melmed S, Bronstein MD, Chanson P, Klibanski A, Casanueva FF, Wass JA, Strasburger CJ, Luger A, Clemmons DR, Giustina A (2018) A consensus statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol 14:552–561

    PubMed  PubMed Central  Google Scholar 

  96. Giustina A, Barkan A, Beckers A, Biermasz N, Biller BMK, Boguszewski C, Bolanowski M, Bonert V, Bronstein MD, Casanueva FF, Clemmons D, Colao A, Ferone D, Fleseriu M, Frara S, Gadelha MR, Ghigo E, Gurnell M, Heaney AP, Ho K, Ioachimescu A, Katznelson L, Kelestimur F, Kopchick J, Krsek M, Lamberts S, Losa M, Luger A, Maffei P, Marazuela M, Mazziotti G, Mercado M, Mortini P, Neggers S, Pereira AM, Petersenn S, Puig-Domingo M, Salvatori R, Shimon I, Strasburger C, Tsagarakis S, van der Lely AJ, Wass J, Zatelli MC, Melmed S (2019) A consensus on the diagnosis and treatment of acromegaly comorbidities: an update. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgz096

    Article  PubMed  Google Scholar 

  97. Cozzi R, Ambrosio MR, Attanasio R, Bozzao A, De Marinis L, De Menis E, Guastamacchia E, Lania A, Lasio G, Logoluso F, Maffei P, Poggi M, Toscano V, Zini M, Chanson P, Katznelson L (2020) Italian Association Of Clinical Endocrinologists (Ame) And Italian Aace Chapter Position Statement For Clinical Practice: Acromegaly—Part 2: Therapeutic Issues. Endocr Metab Immune Disord Drug Targets

  98. Takeda K, Kobayashi J, Nakajima H, Ishibashi-Ueda H, Kitamura S (2006) Valve repair with maze procedure in acromegaly. Asian Cardiovasc Thorac Ann 14(4):e68–70

    PubMed  Google Scholar 

  99. Omoto T, Tedoriya T, Oi M, Nagano N, Miyauchi T, Ishikawa N (2012) Mitral valve repair in a patient with acromegaly. Ann Thorac Cardiovasc Surg 18(2):148–150

    PubMed  Google Scholar 

  100. Liu ZH, Li K, Ding YS, Qiu JX, Meng SS, Momin M, Liu SC, Yi TC, Li JP (2018) Normalization of plasma growth hormone alleviated malignant ventricular tachycardia in acromegaly. J Geriatr Cardiol 15(8):547–550. https://doi.org/10.11909/j.issn.1671-5411.2018.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kitamura T, Otsuki M, Yamaoka M, Saitoh Y, Shimomura I (2013) The temporary drop of serum octreotide concentration deteriorated ventricular tachycardia in an acromegalic patient. Endocr jour EJ 60:13–0174

    Google Scholar 

Download references

Funding

No founding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parolin.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Does not apply to this kind of paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parolin, M., Dassie, F., Vettor, R. et al. Electrophysiological features in acromegaly: re-thinking the arrhythmic risk?. J Endocrinol Invest 44, 209–221 (2021). https://doi.org/10.1007/s40618-020-01343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01343-0

Keywords

Navigation