Skip to main content

Advertisement

Log in

Epicardial adipose tissue is a predictor of decreased kidney function and coronary artery calcification in youth- and early adult onset type 2 diabetes mellitus

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

To examine the association of epicardial and pericardial fat volume (EFV, PFV) with cardiovascular risk factors and kidney function in Native Americans of southwestern heritage with youth and early adult onset type 2 diabetes mellitus (T2DM) versus healthy controls.

Methods

Using computed tomography, we quantified EFV and PFV in 149 Native Americans (92 women, 57 men), 95 of which had T2DM (38 diagnosed prior to age 20 years). Duration of T2DM, mean carotid arterial mass (AM), coronary artery calcification (CAC), IL-6, and estimated glomerular filtration rate eGFRcr(CKD-EPI) were measured.

Results

EFV and PFV were associated with BMI (r = 0.37, p < 0.0001; r = 0.26, p = 0.001) and did not differ between onset age-groups and controls (p > 0.05). EFV was associated with AM only in controls (r = 0.51, p < 0.0001). After adjustment for BMI, T2DM duration, HbA1C, age, and sex, EFV was a predictor of CAC and IL-6 concentrations in early adult onset T2DM (β = 0.05 ± 0.02 cm3, p = 0.03; β = 0.05 ± 0.01 pg/ml/cm3, p = 0.002). EFV and PFV were independent predictors of reduced eGFRcr(CKD-EPI) in the youth onset T2DM group (β = −0.3 ± 0.08 ml/min/cm3, p = 0.001; β = −0.25 ± 0.05 ml/min/cm3, p < 0.0001).

Conclusions

Epicardial fat volume may be a risk factor for heart disease in individuals with early adult onset T2DM and a predictor of decreased kidney function in individuals with youth onset T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iacobellis G (2014) Epicardial adipose tissue in endocrine and metabolic diseases. Endocrine 46(1):8–15

    Article  CAS  PubMed  Google Scholar 

  2. Iozzo P (2011) Myocardial, Perivascular, and Epicardial Fat. Diabetes Care 34(Supplement 2):S371–S379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108(20):2460–2466

    Article  PubMed  Google Scholar 

  4. Konishi M, Sugiyama S, Sugamura K, Nozaki T, Ohba K, Matsubara J et al (2010) Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease. Atherosclerosis 209(2):573–578

    Article  CAS  PubMed  Google Scholar 

  5. Bos D, Shahzad R, van Walsum T, van Vliet LJ, Franco OH, Hofman A et al (2015) Epicardial fat volume is related to atherosclerotic calcification in multiple vessel beds. Eur Heart J Cardiovasc Imaging 16:1264–1269

    Article  PubMed  Google Scholar 

  6. Pezeshkian M, Mahtabipour M-R (2013) Epicardial and subcutaneous adipose tissue Fatty acids profiles in diabetic and non-diabetic patients candidate for coronary artery bypass graft. BioImpacts 3(2):83–89

    PubMed  PubMed Central  Google Scholar 

  7. Tadros TM, Massaro JM, Rosito GA, Hoffmann U, Vasan RS, Larson MG et al (2010) Pericardial fat volume correlates with inflammatory markers: the framingham heart study. Obesity 18(5):1039–1045

    Article  PubMed  Google Scholar 

  8. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the framingham heart study. Circulation 117(5):605–613

    Article  PubMed  Google Scholar 

  9. Konishi M, Sugiyama S, Sato Y, Oshima S, Sugamura K, Nozaki T et al (2010) Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis 213(2):649–655

    Article  CAS  PubMed  Google Scholar 

  10. Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y et al (2011) Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J 52(3):139–142

    Article  CAS  PubMed  Google Scholar 

  11. Saran R, Robinson B, Abbott KC, Agodoa LY, Albertus P, Ayanian J et al (2017) US renal data system 2016 annual data report: epidemiology of kidney disease in the US. Am J Kidney Dis 69(3 Suppl 1):A7–A8. https://doi.org/10.1053/j.ajkd.2016.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Foley RN, Murray AM, Li S, Herzog CA, McBean AM, Eggers PW et al (2005) Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States medicare population, 1998 to 1999. J Am Soc Nephrol JASN 16(2):489–495

    Article  PubMed  Google Scholar 

  13. Kerr JD, Holden RM, Morton AR, Nolan RL, Hopman WM, Pruss CM et al (2013) Associations of epicardial fat with coronary calcification, insulin resistance, inflammation, and fibroblast growth factor-23 in stages 3–5 chronic kidney disease. BMC Nephrol 14:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cordeiro AC, Amparo FC, Oliveira MAC, Amodeo C, Smanio P, Pinto IMF et al (2015) Epicardial fat accumulation, cardiometabolic profile and cardiovascular events in patients with stages 3–5 chronic kidney disease. J Intern Med 278(1):77–87

    Article  CAS  PubMed  Google Scholar 

  15. Altun B, Tasolar H, Eren N, Binnetoğlu E, Altun M, Temiz A et al (2014) Epicardial adipose tissue thickness in hemodialysis patients. Echocardiography 31(8):941–946

    Article  PubMed  Google Scholar 

  16. Atakan A, Macunluoglu B, Kaya Y, Ari E, Demir H, Asicioglu E et al (2014) Epicardial fat thickness is associated with impaired coronary flow reserve in hemodialysis patients. Hemodial Int Int Symp Home Hemodial 18(1):62–69

    Article  Google Scholar 

  17. Krakoff J, Lindsay RS, Looker HC, Nelson RG, Hanson RL, Knowler WC (2003) Incidence of retinopathy and nephropathy in youth-onset compared with adult-onset type 2 diabetes. Diabetes Care 26(1):76–81

    Article  PubMed  Google Scholar 

  18. Dabelea D, Hanson RL, Bennett PH, Roumain J, Knowler WC, Pettitt DJ (1998) Increasing prevalence of type II diabetes in American Indian children. Diabetologia 41(8):904–910

    Article  CAS  PubMed  Google Scholar 

  19. Nelson RG, Newman JM, Knowler WC, Sievers ML, Kunzelman CL, Pettitt DJ et al (1988) Incidence of end-stage renal disease in type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia 31(10):730–736

    Article  CAS  PubMed  Google Scholar 

  20. Pavkov ME, Bennett PH, Knowler WC, Krakoff J, Sievers ML, Nelson RG (2006) EFfect of youth-onset type 2 diabetes mellitus on incidence of end-stage renal disease and mortality in young and middle-aged pima indians. JAMA 296(4):421–426

    Article  CAS  PubMed  Google Scholar 

  21. Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E et al (1993) Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus: prospective studies of pima Indians. N Engl J Med 329(27):1988–1992

    Article  CAS  PubMed  Google Scholar 

  22. Association AD (2005) Diagnosis and classification of diabetes mellitus. Diabetes Care 28(suppl 1):s37–s42

    Article  Google Scholar 

  23. Safar ME, Boudier HS (2005) Vascular development, pulse pressure, and the mechanisms of hypertension. Hypertension 46(1):205–209

    Article  CAS  PubMed  Google Scholar 

  24. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte JM, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832

    Article  CAS  PubMed  Google Scholar 

  25. Chasson AL, Grady HJ, Stanley MA (1960) Determination of creatinine by means of automatic chemical analysis. Tech Bull Regist Med Technol 30:207–212

    CAS  PubMed  Google Scholar 

  26. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ho E, Shimada Y (1978) Formation of the epicardium studied with the scanning electron microscope. Dev Biol 66(2):579–585

    Article  CAS  PubMed  Google Scholar 

  28. Weissberg PL, Bennett MR (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(24):1928–1929

    Article  CAS  PubMed  Google Scholar 

  29. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153(6):907–917

    Article  CAS  PubMed  Google Scholar 

  30. Yudkin JS, Eringa E, Stehouwer CDA (2005) “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet Lond Engl 365(9473):1817–1820

    Article  Google Scholar 

  31. Henrichot E, Juge-Aubry CE, Pernin A, Pache J-C, Velebit V, Dayer J-M et al (2005) Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol 25(12):2594–2599

    Article  CAS  PubMed  Google Scholar 

  32. Barandier C, Montani J-P, Yang Z (2005) Mature adipocytes and perivascular adipose tissue stimulate vascular smooth muscle cell proliferation: effects of aging and obesity. Am J Physiol Heart Circ Physiol 289(5):H1807–H1813

    Article  CAS  PubMed  Google Scholar 

  33. Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22(11):450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belcaro G, Nicolaides AN, Laurora G, Cesarone MR, De Sanctis M, Incandela L et al (1996) Ultrasound morphology classification of the arterial wall and cardiovascular events in a 6-year follow-up study. Arterioscler Thromb Vasc Biol 16(7):851–856

    Article  CAS  PubMed  Google Scholar 

  35. Hartman J, Frishman WH (2014) Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev 22(3):147–151

    Article  PubMed  Google Scholar 

  36. Interleukin-6 receptor mendelian randomisation analysis (IL6R MR) consortium, Swerdlow DI, Holmes MV, Kuchenbaecker KB, Engmann JEL, Shah T et al (2012) The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet Lond Engl 379(9822):1214–1224

    Article  CAS  Google Scholar 

  37. Knowler WC, Pettitt DJ, Saad MF, Bennett PH (1990) Diabetes mellitus in the pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 6(1):1–27

    Article  CAS  PubMed  Google Scholar 

  38. Pavkov ME, Sievers ML, Knowler WC, Bennett PH, Nelson RG (2004) An explanation for the increase in heart disease mortality rates in diabetic Pima Indians: effect of renal replacement therapy. Diabetes Care 27(5):1132–1136

    Article  PubMed  Google Scholar 

  39. Luk AOY, So W-Y, Ma RCW, Kong APS, Ozaki R, Ng VSW et al (2008) Metabolic syndrome predicts new onset of chronic kidney disease in 5829 patients with type 2 diabetes: a 5-year prospective analysis of the Hong Kong Diabetes Registry. Diabetes Care 31(12):2357–2361

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Contributions

MR wrote the manuscript. MR and TC analyzed the data. MR, MST, TC, and JK designed the study. MR and TC quantified epicardial and pericardial adipose tissue. MR, TC, MST, and JK contributed to the interpretations of findings and commented on and edited the drafts. JK is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to M. Reinhardt.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors. This study was approved by the NIDDK Institutional Review Board.

Informed consent

All participants gave written and verbal informed consent for the studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinhardt, M., Cushman, T.R., Thearle, M.S. et al. Epicardial adipose tissue is a predictor of decreased kidney function and coronary artery calcification in youth- and early adult onset type 2 diabetes mellitus. J Endocrinol Invest 42, 979–986 (2019). https://doi.org/10.1007/s40618-019-1011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-1011-8

Keywords

Navigation