Skip to main content

Advertisement

Log in

Therapeutic effects of the selective farnesoid X receptor agonist obeticholic acid in a monocrotaline-induced pulmonary hypertension rat model

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Activation of the farnesoid X receptor (FXR), a member of the nuclear receptor steroid superfamily, leads to anti-inflammatory and anti-fibrotic effects in several tissues, including the lung. We have recently demonstrated a protective effect of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) in rat models of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) and bleomycin-induced pulmonary fibrosis. The aim of the present study was to investigate whether the positive effects of OCA treatment could be exerted also in established MCT-induced PAH, i.e., starting treatment 2 weeks after MCT administration.

Methods

Rats with MCT-induced PAH were treated, 2 weeks after MCT administration, with OCA or tadalafil for two additional weeks. Pulmonary functional tests were performed at week 2 (before treatment) and four (end of treatment). At the same time points, lung morphological features and expression profile of genes related to smooth muscle relaxation/contraction and tissue remodeling were also assessed.

Results

2 weeks after MCT-induced injury, the treadmill resistance (a functional parameter related to pulmonary hypertension) was significantly decreased. At the same time point, we observed right ventricular hypertrophy and vascular remodeling, with upregulation of genes related to inflammation. At week 4, we observed a further worsening of the functional and morphological parameters, accompanied by dysregulation of inflammatory and extracellular matrix markers mRNA expression. Administration of OCA (3 or 10 mg/kg/day), starting 2 weeks after MCT-induced injury, significantly improved pulmonary function, effectively normalizing the exercise capacity. OCA also reverted most of the lung alterations, with a significant reduction of lung vascular wall thickness, right ventricular hypertrophy, and restoration of the local balance between relaxant and contractile pathways. Markers of remodeling pathways were also normalized by OCA treatment. Notably, results with OCA treatment were similar, or even superior, to those obtained with tadalafil, a recently approved treatment for pulmonary hypertension.

Conclusions

The results of this study demonstrate a significant therapeutic effect of OCA in established MCT-induced PAH, improving exercise capacity associated with reduction of right ventricular hypertrophy and lung vascular remodeling. Thus, OCA dosing in a therapeutic protocol restores the balance between relaxant and contractile pathways in the lung, promoting cardiopulmonary protective actions in MCT-induced PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66:948–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Copple BL, Li T (2016) Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 104:9–21

    Article  CAS  PubMed  Google Scholar 

  3. Cariou B, van Harmelen K, Duran-Sandoval D et al (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281:11039–11049

    Article  CAS  PubMed  Google Scholar 

  4. Houten SM, Volle DH, Cummins CL et al (2007) In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue. Mol Endocrinol 21:1312–1323

    Article  CAS  PubMed  Google Scholar 

  5. Schote AB, Turner JD, Schiltz J, Muller CP (2007) Nuclear receptors in human immune cells: expression and correlations. Mol Immunol 44:1436–1445

    Article  CAS  PubMed  Google Scholar 

  6. Higashiyama H, Kinoshita M, Asano S (2008) Immunolocalization of farnesoid X receptor (FXR) in mouse tissues using tissue microarray. Acta Histochem 110:86–93

    Article  PubMed  Google Scholar 

  7. Lefebvre P, Cariou B, Lien F et al (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89:147–191

    Article  CAS  PubMed  Google Scholar 

  8. Popescu IR, Helleboid-Chapman A, Lucas A et al (2010) The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity. FEBS Lett 584:2845–2851

    Article  CAS  PubMed  Google Scholar 

  9. Ali AH, Carey EJ, Lindor KD (2015) Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 3:5

    PubMed  PubMed Central  Google Scholar 

  10. Ye L, Jiang Y, Zuo X (2015) Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure. Biochem Biophys Res Commun 467:164–170

    Article  CAS  PubMed  Google Scholar 

  11. Comeglio P, Filippi S, Sarchielli E et al (2017) Anti-fibrotic effects of chronic treatment with the selective FXR agonist obeticholic acid in the bleomycin-induced rat model of pulmonary fibrosis. J Steroid Biochem Mol Biol 168:26–37

    Article  CAS  PubMed  Google Scholar 

  12. He F, Li J, Mu Y et al (2006) Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ Res 98:192–199

    Article  CAS  PubMed  Google Scholar 

  13. Hendrick SM, Mroz MS, Greene CM et al (2014) Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 307:407–418

    Article  CAS  Google Scholar 

  14. Vignozzi L, Morelli A, Cellai I et al (2017) Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension. J Steroid Biochem Mol Biol 165:277–292

    Article  CAS  PubMed  Google Scholar 

  15. Shaik FB, Panati K, Narasimha VR, Narala VR (2015) Chenodeoxycholic acid attenuates ovalbumin-induced airway inflammation in murine model of asthma by inhibiting the T(H)2 cytokines. Biochem Biophys Res Commun 463(4):600–605

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Li T, Yu D et al (2012) FXR protects lung from lipopolysaccharide-induced acute injury. Mol Endocrinol 26:27–36

    Article  CAS  PubMed  Google Scholar 

  17. Pellicciari R, Fiorucci S, Camaioni E et al (2002) 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45:3569–3572

    Article  CAS  PubMed  Google Scholar 

  18. Markham A, Keam SJ (2016) Obeticholic acid: First global approval. Drugs 76(12):1221–1226

    Article  CAS  PubMed  Google Scholar 

  19. Hirschfield GM, Mason A, Luketic V et al (2015) Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148:751–761

    Article  CAS  PubMed  Google Scholar 

  20. Nevens F, Andreone P, Mazzella G et al (2016) A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 375(7):631–643

    Article  CAS  PubMed  Google Scholar 

  21. Neuschwander-Tetri BA, Loomba R, Sanyal AJ et al (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–965

    Article  CAS  PubMed  Google Scholar 

  22. Mudaliar S, Henry RR, Sanyal AJ et al (2013) Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145:574–582

    Article  CAS  PubMed  Google Scholar 

  23. Wang XX, Jiang T, Shen Y et al (2010) Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59:2916–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vignozzi L, Morelli A, Filippi S et al (2011) Farnesoid X receptor activation improves erectile function in animal models of metabolic syndrome and diabetes. J Sex Med 8(1):57–77

    Article  CAS  PubMed  Google Scholar 

  25. Adorini L, Pruzanski M, Shapiro D (2012) Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today 17:988–997

    Article  CAS  PubMed  Google Scholar 

  26. Vignozzi L, Filippi S, Comeglio P et al (2014) Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit. Mol Cell Endocrinol 384:143–154

    Article  CAS  PubMed  Google Scholar 

  27. Zhou B, Feng B, Qin Z et al (2016) Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephropathy. Mol Cell Endocrinol 419:72–82

    Article  CAS  PubMed  Google Scholar 

  28. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR (2014) Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guazzi M, Phillips SA, Arena R, Lavie CJ (2015) Endothelial dysfunction and lung capillary injury in cardiovascular diseases. Prog Cardiovasc Dis 57:454–462

    Article  PubMed  Google Scholar 

  30. Latus H, Delhaas T, Schranz D, Apitz C (2015) Treatment of pulmonary arterial hypertension in children. Nat Rev Cardiol 12:244–254

    Article  CAS  PubMed  Google Scholar 

  31. Lang M, Kojonazarov B, Tian X et al (2012) The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats. PLoS ONE 7:e43433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malenfant S, Neyron AS, Paulin R et al (2013) Signal transduction in the development of pulmonary arterial hypertension. Pulm Circ 3:278–293

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jing ZC, Parikh K, Pulido T et al (2013) Efficacy and safety of oral treprostinil monotherapy for the treatment of pulmonary arterial hypertension: a randomized, controlled trial. Circulation 127:624–633

    Article  CAS  PubMed  Google Scholar 

  34. Sitbon O, Channick R, Chin KM et al (2015) Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med 373:2522–2533

    Article  CAS  PubMed  Google Scholar 

  35. McLaughlin VV, Benza RL, Rubin LJ et al (2010) Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol 55:1915–1922

    Article  CAS  PubMed  Google Scholar 

  36. Ataya A, Cope J, Alnuaimat H (2016) A review of targeted pulmonary arterial hypertension-specific pharmacotherapy. J Clin Med 5(12):E114

    Article  CAS  PubMed  Google Scholar 

  37. Stenmark KR, Meyrick B, Galie N et al (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297:L1013–L1032

    Article  CAS  PubMed  Google Scholar 

  38. Sakuma F, Miyata M, Kasukawa R (1999) Suppressive effect of prostaglandin E1 on pulmonary hypertension induced by monocrotaline in rats. Lung 177:77–88

    Article  CAS  PubMed  Google Scholar 

  39. Cowan KN, Heilbut A, Humpl T et al (2000) Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med 6:698–702

    Article  CAS  PubMed  Google Scholar 

  40. Kwon JH, Kim KC, Cho MS et al (2013) An inhibitory effect of tumor necrosis factor-alpha antagonist to gene expression in monocrotaline-induced pulmonary hypertensive rats model Korean. J Pediatr 56:116–124

    CAS  Google Scholar 

  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki Y, Suzuki H, Itoh S et al (2012) K-134, a phosphodiesterase 3 inhibitor, improves gait disturbance and hindlimb blood flow impairment in rat peripheral artery disease models. Eur J Pharmacol 689:132–138

    Article  CAS  PubMed  Google Scholar 

  43. Okumura K, Kato H, Honjo O et al (2015) Carvedilol improves biventricular fibrosis and function in experimental pulmonary hypertension. J Mol Med (Berl) 93:663–674

    Article  CAS  Google Scholar 

  44. Comeglio P, Morelli A, Adorini L et al (2017) Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin Investig Drugs 26:1215–1228

    Article  CAS  PubMed  Google Scholar 

  45. Comeglio P, Filippi S, Sarchielli E et al (2018) Therapeutic effects of obeticholic acid (OCA) treatment in a bleomycin-induced pulmonary fibrosis rat model. J Endocrinol Invest. 2018. https://doi.org/10.1007/s40618-018-0913-1 (epub ahead of print)

    Article  PubMed  Google Scholar 

  46. Sztuka K, Jasińska-Stroschein M (2017) Animal models of pulmonary arterial hypertension: a systematic review and meta-analysis of data from 6126 animals. Pharmacol Res 125:201–214

    Article  PubMed  Google Scholar 

  47. Rubin LJ, Badesch DB, Barst RJ et al (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346:896–903

    Article  CAS  PubMed  Google Scholar 

  48. Galiè N, Brundage BH, Ghofrani HA et al (2009) Tadalafil therapy for pulmonary arterial hypertension. Circulation 119:2894–2903

    Article  CAS  PubMed  Google Scholar 

  49. Ranchoux B, Antigny F, Rucker-Martin C et al (2015) Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131:1006–1018

    Article  CAS  PubMed  Google Scholar 

  50. Yang J, Li X, Al-Lamki RS et al (2010) Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo. Circ Res 107:252–262

    Article  CAS  PubMed  Google Scholar 

  51. Hashimoto N, Phan SH, Imaizumi K et al (2010) Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43:161–172

    Article  CAS  PubMed  Google Scholar 

  52. Ahmedat AS, Warnken M, Seemann WK et al (2013) Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine/paracrine endothelinergic system. Br J Pharmacol 168:471–487

    Article  CAS  PubMed  Google Scholar 

  53. Wermuth PJ, Li Z, Mendoza FA, Jimenez SA (2016) Stimulation of transforming growth factor-β1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS One 11:e0161988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Breier G, Risau W (1996) The role of vascular endothelial growth factor in blood vessel formation. Trends Cell Biol 6:454–456

    Article  CAS  PubMed  Google Scholar 

  55. Kelland NF, Kuc RE, McLean DL et al (2010) Endothelial cell-specific ETB receptor knockout: autoradiographic and histological characterisation and crucial role in the clearance of endothelin-1. Can J Physiol Pharmacol 88(6):644–651

    Article  CAS  PubMed  Google Scholar 

  56. Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106(11):1675–1680

    Article  CAS  PubMed  Google Scholar 

  57. Swigris JJ, Brown KK (2010) The role of endothelin-1 in the pathogenesis of idiopathic pulmonary fibrosis. BioDrugs 24(1):49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosenzweig BL, Imamura T, Okadome T et al (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 92:7632–7636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Du L, Sullivan CC, Chu D et al (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348:500–509

    Article  CAS  PubMed  Google Scholar 

  60. Dewachter L, Adnot S, Guignabert C et al (2009) Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension. Eur Respir J 34:1100–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thomson JR, Machado RD, Pauciulo MW et al (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 37(10):741–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Atkinson C, Stewart S, Upton PD et al (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105:1672–1678

    Article  CAS  PubMed  Google Scholar 

  63. Rouillard AD, Gundersen GW, Fernandez NF et al (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford) 2016:1–16

    Article  CAS  Google Scholar 

  64. Shenoy V, Qi Y, Katovich MJ, Raizada MK (2011) ACE2, a promising therapeutic target for pulmonary hypertension. Curr Opin Pharmacol 11(2):150–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dai HL, Guo Y, Guang XF et al (2013) The changes of serum angiotensin-converting enzyme 2 in patients with pulmonary arterial hypertension due to congenital heart disease. Cardiology 124:208–212

    Article  CAS  PubMed  Google Scholar 

  66. Ferreira AJ, Shenoy V, Yamazato Y et al (2009) Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med 179(11):1048–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang F, Yang J, Zhang Y et al (2014) Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets. Nat Rev Cardiol 11:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang J, Li X, Al-Lamki RS et al (2013) Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 33(1):34–42

    Article  CAS  PubMed  Google Scholar 

  69. Thompson AAR, Lawrie A (2017) Targeting vascular remodeling to treat pulmonary arterial hypertension. Trends Mol Med 23(1):31–45

    Article  CAS  PubMed  Google Scholar 

  70. Schermul RT, Kreisselmeier KP, Ghofrani HA et al (2004) Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med 169:39–45

    Article  Google Scholar 

  71. Sawamura F, Kato M, Fujita K et al (2009) Tadalafil, a long-acting inhibitor of PDE5, improves pulmonary hemodynamics and survival rate of monocrotaline-induced pulmonary artery hypertension in rats. J Pharmacol Sci 111:235–243

    Article  CAS  PubMed  Google Scholar 

  72. Lee DS, Kim YK, Jung YW (2010) Simvastatin, sildenafil and their combination in monocrotaline induced pulmonary arterial hypertension. Korean Circ J 40:659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yen CH, Leu S, Lin YC et al (2010) Sildenafil limits monocrotaline-induced pulmonary hypertension in rats through suppression of pulmonary vascular remodeling. J Cardiovasc Pharmacol 55:574–584

    Article  CAS  PubMed  Google Scholar 

  74. Arif SA, Poon H (2011) Tadalafil: a long-acting phosphodiesterase-5 inhibitor for the treatment of pulmonary arterial hypertension. Clin Ther 33:993–1004

    Article  CAS  PubMed  Google Scholar 

  75. Schroll S, Sebah D, Wagner M et al (2013) Improvement of exercise capacity in monocrotaline-induced pulmonary hypertension by the phosphodiesterase-5 inhibitor Vardenafil. Respir Physiol Neurobiol 186:61–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by a scientific Grant from Intercept Pharmaceuticals (New York, NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vignozzi.

Ethics declarations

Conflict of interest

PC, SF, ES, AM, IC, CC, GBV, MM and LV have no conflicts of interest. LA is a scientific consultant for Intercept Pharmaceuticals.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comeglio, P., Filippi, S., Sarchielli, E. et al. Therapeutic effects of the selective farnesoid X receptor agonist obeticholic acid in a monocrotaline-induced pulmonary hypertension rat model. J Endocrinol Invest 42, 951–965 (2019). https://doi.org/10.1007/s40618-019-1009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-1009-2

Keywords

Navigation