Advertisement

Journal of Endocrinological Investigation

, Volume 42, Issue 9, pp 1011–1018 | Cite as

Gut microbiome and microbial metabolites: a new system affecting metabolic disorders

  • M. FedericiEmail author
Short Review

Abstract

Introduction

The gut microbiome is emerging as an important player in the field of metabolic disorders.

Materials and methods

Currently, several studies are ongoing to determine whether the effect of gut microbiome on obesity, type 2 diabetes, non-alcoholic fatty liver disease, and other metabolic diseases is determined by singular species or rather by a functional role of bacterial metabolism at higher taxonomical level. Deciphering if a single or more species are responsible for metabolic traits or rather microbial metabolic pathways are responsible for effects on host metabolism may help to identify appropriate dietary interventions to support microbial functions according to the prevalent host disease. Furthermore, the combination of metagenomics and metabolomics-based signature might be applied in the future to improve the risk prediction in healthy subjects.

Conclusion

In this review, I will summarize the current findings regarding the role of gut microbiome and metabolites in metabolic disorders to argue whether the current achievements may be translated into clinical practice.

Keywords

Gut microbiome Diabetes Obesity Metagenomics Metabolomics 

Notes

Acknowledgements

This review isbased on the Italian Society of Endocrinology (SIE) career award lecture. M.F. work related to this manuscript was in part funded by EU-FP7 FLORINASH (Health-F2-2009-241913), Ministry of University (MIUR) Progetti di Ricerca di Interesse Nazionale (PRIN) protocol number 2015MPESJS_004, Ministry of Health Ricerca Finalizzata RF-2011-02349921, Fondazione Roma call for Non-Communicable Diseases NCD 2014. The author thanks Dr. Carla Pietrini for editorial assistance.

Compliance with ethical standards

Conflict of interest

The author is co-inventor on pending patents held by INSERM Transfert, INSERM, University of Rome Tor Vergata, University of Girona and Imperial College on NAFLD diagnostics and has the right to receive royalty payments for inventions or discoveries related to NAFLD diagnostics.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent.

References

  1. 1.
    Durack J, Lynch SV (2018) The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med  https://doi.org/10.1084/jem.20180448 CrossRefPubMedGoogle Scholar
  2. 2.
    Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400CrossRefPubMedGoogle Scholar
  3. 3.
    Sonnenburg JL, Bäckhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535(7610):56–64CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Clemente JC, Manasson J, Scher JU (2018) The role of the gut microbiome in systemic inflammatory disease. BMJ 360:j5145CrossRefPubMedGoogle Scholar
  5. 5.
    van de Guchte M, Blottière HM, Doré J (2018) Humans as holobionts: implications for prevention and therapy. Microbiome 6(1):81CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Doré J, Mattila I, Plichta DR, Pöhö P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jørgensen T, Holm JB, Trošt K, MetaHIT Consortium, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535(7612):376–381CrossRefPubMedGoogle Scholar
  7. 7.
    Brown JM, Hazen SL (2018) Microbial modulation of cardiovascular disease. Nat Rev Microbiol 16(3):171–181CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wahlström A, Sayin SI, Marschall HU, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50CrossRefPubMedGoogle Scholar
  9. 9.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772CrossRefPubMedGoogle Scholar
  10. 10.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481CrossRefPubMedGoogle Scholar
  11. 11.
    Serino M, Luche E, Gres S, Baylac A, Bergé M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C, Mariette J, Bouchez O, Lluch J, Ouarné F, Monsan P, Valet P, Roques C, Amar J, Bouloumié A, Théodorou V, Burcelin R (2012) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61(4):543–553CrossRefPubMedGoogle Scholar
  12. 12.
    Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559–572CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pomié C, Blasco-Baque V, Klopp P, Nicolas S, Waget A, Loubières P, Azalbert V, Puel A, Lopez F, Dray C, Valet P, Lelouvier B, Servant F, Courtney M, Amar J, Burcelin R, Garidou L (2016) Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia. Mol Metab 5(6):392–403CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R, Lindskog Jonsson A, Hållenius FF, Akrami R, Johansson E, Wester P, Arnerlöv C, Bäckhed F, Bergström G (2017) Bacterial profile in human atherosclerotic plaques. Atherosclerosis 263:177–183CrossRefGoogle Scholar
  15. 15.
    Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, Nielsen J (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ni J, Wu GD, Albenberg L, Tomov VT (2017) Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14(10):573–584CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Marchix J, Goddard G, Helmrath MA (2018) Host-gut microbiota crosstalk in intestinal adaptation. Cell Mol Gastroenterol Hepatol 6(2):149–162CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, Mazzola MA, Liu S, Glanz BL, Cook S, Tankou S, Stuart F, Melo K, Nejad P, Smith K, Topçuolu BD, Holden J, Kivisäkk P, Chitnis T, De Jager PL, Quintana FJ, Gerber GK, Bry L, Weiner HL (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7:12015CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Long MT, Fox CS (2016) The Framingham Heart Study—67 years of discovery in metabolic disease. Nat Rev Endocrinol 12(3):177–183CrossRefPubMedGoogle Scholar
  20. 20.
    Scorletti E, Byrne CD (2016) Extrahepatic diseases and NAFLD: the triangular relationship between NAFLD, type 2-diabetes and dysbiosis. Dig Dis 34(Suppl 1):11–18CrossRefPubMedGoogle Scholar
  21. 21.
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075CrossRefPubMedGoogle Scholar
  22. 22.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023CrossRefPubMedGoogle Scholar
  23. 23.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484CrossRefPubMedGoogle Scholar
  24. 24.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031 (PubMed PMID: 17183312) CrossRefPubMedGoogle Scholar
  25. 25.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brunkwall L, Orho-Melander M (2017) The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 60(6):943–951CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Komaroff AL (2017) The microbiome and risk for obesity and diabetes. JAMA 317(4):355–356CrossRefPubMedGoogle Scholar
  28. 28.
    Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2):e9085CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Egshatyan L, Kashtanova D, Popenko A, Tkacheva O, Tyakht A, Alexeev D, Karamnova N, Kostryukova E, Babenko V, Vakhitova M, Boytsov S (2016) Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect 5(1):1–9CrossRefPubMedGoogle Scholar
  30. 30.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60CrossRefPubMedGoogle Scholar
  31. 31.
    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103CrossRefPubMedGoogle Scholar
  32. 32.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, Shilo S, Lador D, Vila AV, Zmora N, Pevsner-Fischer M, Israeli D, Kosower N, Malka G, Wolf BC, Avnit-Sagi T, Lotan-Pompan M, Weinberger A, Halpern Z, Carmi S, Fu J, Wijmenga C, Zhernakova A, Elinav E, Segal E (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695):210–215CrossRefPubMedGoogle Scholar
  33. 33.
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J, MetaHIT Consortium, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23(7):850–858CrossRefPubMedGoogle Scholar
  35. 35.
    Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, ANR MicroObes Consortium, Doré J, Zucker JD, Clément K, Ehrlich SD (2013) Dietary intervention impact on gut microbial gene richness. Nature 500(7464):585–588.  https://doi.org/10.1038/nature12480 CrossRefPubMedGoogle Scholar
  36. 36.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, MetaHIT Consortium, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefPubMedGoogle Scholar
  37. 37.
    Radaelli MG et al (2018) NAFLD/NASH in patients with type 2 diabetes and related treatment Options. J Endocrinol Investig 41:509–521CrossRefGoogle Scholar
  38. 38.
    Hoyles L, Fernández-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH, Chilloux J, Myridakis A, Martinez-Gili L, Moreno-Navarrete JM, Benhamed F, Azalbert V, Blasco-Baque V, Puig J, Xifra G, Ricart W, Tomlinson C, Woodbridge M, Cardellini M, Davato F, Cardolini I, Porzio O, Gentileschi P, Lopez F, Foufelle F, Butcher SA, Holmes E, Nicholson JK, Postic C, Burcelin R, Dumas ME (2018) Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 24:1070–1080CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sze MA, Schloss PD (2016) Looking for a signal in the noise: revisiting obesity and the microbiome. MBio 7:e01018–e1116CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ruiz-Canela M, Guasch-Ferré M, Toledo E, Clish CB, Razquin C, Liang L, Wang DD, Corella D, Estruch R, Hernáez Á, Yu E, Gómez-Gracia E, Zheng Y, Arós F, Romaguera D, Dennis C, Ros E, Lapetra J, Serra-Majem L, Papandreou C, Portoles O, Fitó M, Salas-Salvadó J, Hu FB, Martínez-González MA (2018) Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia 61(7):1560–1571CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tobias DK, Lawler PR, Harada PH, Demler OV, Ridker PM, Manson JE, Cheng S, Mora S (2018) Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ Genom Precis Med 11(4):e002157CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Arany Z, Neinast M (2018) Branched chain amino acids in metabolic disease. Curr Diabetes Rep 18(10):76.  https://doi.org/10.1007/s11892-018-1048-7 CrossRefGoogle Scholar
  43. 43.
    Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, Rhee J, Hoshino A, Kim B, Ibrahim A, Baca LG, Kim E, Ghosh CC, Parikh SM, Jiang A, Chu DE, Forman Q, Lecker SH, Krishnaiah S, Rabinowitz JD, Weljie AM, Baur JA, Kasper DL, Arany Z (2016) A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med 22(4):421–426CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Brial F, Le Lay A, Dumas ME, Gauguier D (2018) Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol Life Sci 75(21):3977–3990CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mavilio M, Marchetti V, Fabrizi M, Stöhr R, Marino A, Casagrande V, Fiorentino L, Cardellini M, Kappel B, Monteleone I, Garret C, Mauriello A, Monteleone G, Farcomeni A, Burcelin R, Menghini R, Federici M (2016) A role for Timp3 in microbiota-driven hepatic steatosis and metabolic dysfunction. Cell Rep 16(3):731–743CrossRefPubMedGoogle Scholar
  46. 46.
    Tuomainen M, Lindström J, Lehtonen M, Auriola S, Pihlajamäki J, Peltonen M, Tuomilehto J, Uusitupa M, de Mello VD, Hanhineva K (2018) Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes 8(1):35CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    de Mello VD, Paananen J, Lindström J, Lankinen MA, Shi L, Kuusisto J, Pihlajamäki J, Auriola S, Lehtonen M, Rolandsson O, Bergdahl IA, Nordin E, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Landberg R, Eriksson JG, Tuomilehto J, Hanhineva K, Uusitupa M (2017) Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep 7:46337CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, Fleet JC, Kortagere S, Mukherjee P, Fasano A, Le Ven J, Nicholson JK, Dumas ME, Khanna KM, Mani S (2014) Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41(2):296–310CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F, Metghalchi S, Sovran B, Denis RGP, Dairou J, Cardellini M, Moreno-Navarrete JM, Straub M, Jegou S, McQuitty C, Viel T, Esposito B, Tavitian B, Callebert J, Luquet S, Federici M, Fernandez-Real JM, Burcelin R, Launay JM, Tedgui A, Mallat Z, Sokol H, Taleb S (2018) Indoleamine 2–3 dioxygenase shapes microbiota to reduce IL-22 and promote metabolic disease. Nat Med.  https://doi.org/10.1038/s41591-018-0060-4 CrossRefPubMedGoogle Scholar
  50. 50.
    Lau WL, Savoj J, Nakata MB, Vaziri ND (2018) Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin Sci (Lond) 132(5):509–522CrossRefGoogle Scholar
  51. 51.
    Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345CrossRefPubMedGoogle Scholar
  52. 52.
    Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, Blundell JE, Bell JD, Thomas EL, Mt-Isa S, Ashby D, Gibson GR, Kolida S, Dhillo WS, Bloom SR, Morley W, Clegg S, Frost G (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754CrossRefPubMedGoogle Scholar
  53. 53.
    Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Moreno-Navarrete JM, Serino M, Blasco-Baque V, Azalbert V, Barton RH, Cardellini M, Latorre J, Ortega F, Sabater-Masdeu M, Burcelin R, Dumas ME, Ricart W, Federici M, Fernández-Real JM (2018) Gut microbiota interacts with markers of adipose tissue browning, insulin action and plasma acetate in morbid obesity. Mol Nutr Food Res.  https://doi.org/10.1002/mnfr.201700721 CrossRefPubMedGoogle Scholar
  55. 55.
    Campisciano G, Palmisano S, Cason C, Giuricin M, Silvestri M, Guerra M, Macor D, De Manzini N, Crocé LS, Comar M (2018) Gut microbiota characterisation in obese patients before and after bariatric surgery. Benef Microbes 9(3):367–373.  https://doi.org/10.3920/BM2017.0152 CrossRefPubMedGoogle Scholar
  56. 56.
    Pucci A, Batterham RL (2018) Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different. J Endocrinol Invest.  https://doi.org/10.1007/s40618-018-0892-2 ([Epub ahead of print] Review. PubMed PMID: 29730732) CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Magouliotis DE, Tasiopoulou VS, Sioka E, Chatedaki C, Zacharoulis D (2017) Impact of bariatric surgery on metabolic and gut microbiota profile: a systematic reviewand meta-analysis. Obes Surg 27(5):1345–1357.  https://doi.org/10.1007/s11695-017-2595-8 (Review. PubMed PMID: 28265960) CrossRefPubMedGoogle Scholar
  58. 58.
    Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W (2017) Gut microbiome and serummetabolome alterations in obesity and after weight-loss intervention. Nat Med 23(7):859–868.  https://doi.org/10.1038/nm.4358 (Epub 2017 Jun 19. PubMed PMID:28628112) CrossRefPubMedGoogle Scholar
  59. 59.
    Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD, Dao MC, Verger EO, Hedjazi L, Bouillot JL, Chevallier JM, Pons N, Le Chatelier E, Levenez F, Ehrlich SD, Dore J, Zucker JD, Clément K (2018) Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut.  https://doi.org/10.1136/gutjnl-2018-316103 ([Epub ahead of print] PubMed PMID: 29899081) CrossRefPubMedGoogle Scholar
  60. 60.
    Cani PD (2018) Severe obesity and gut microbiota: does bariatric surgery really reset the system? Gut.  https://doi.org/10.1136/gutjnl-2018-316815 ([Epub ahead of print] PubMed PMID: 29991642) CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156CrossRefPubMedGoogle Scholar
  62. 62.
    Covelli D, Ludgate M (2017) The thyroid, the eyes and the gut: a possible connection. J Endocrinol Invest 40(6):567–576.  https://doi.org/10.1007/s40618-016-0594-6 (Epub 2017 Jan 7. Review. PubMed PMID: 28063079) CrossRefPubMedGoogle Scholar
  63. 63.
    Jackson MA, Verdi S, Maxan ME, Shin CM, Zierer J, Bowyer RCE, Martin T, Williams FMK, Menni C, Bell JT, Spector TD, Steves CJ (2018) Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun 9(1):2655.  https://doi.org/10.1038/s41467-018-05184-7 (PubMed PMID: 29985401; PubMed Central PMCID:PMC6037668) CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Brechmann T, Sperlbaum A, Schmiegel W (2017) Levothyroxine therapy and impaired clearance are the strongest contributors to small intestinal bacterial overgrowth: Results of a retrospective cohort study. World J Gastroenterol 23(5):842–852.  https://doi.org/10.3748/wjg.v23.i5.842 (PubMed PMID: 28223728; PubMed Central PMCID: PMC5296200) CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2019

Authors and Affiliations

  1. 1.Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly

Personalised recommendations