Advertisement

DNA methylation of genes regulating appetite and prediction of weight loss after bariatric surgery in obese individuals

  • F. Coppedè
  • M. Seghieri
  • A. Stoccoro
  • E. Santini
  • L. Giannini
  • C. Rossi
  • L. Migliore
  • A. Solini
Original Article
  • 149 Downloads

Abstract

Purpose

Epigenetic traits are influenced by clinical variables; interaction between DNA methylation (DNAmeth) and bariatric surgery-induced weight loss has been scarcely explored. We investigated whether DNAmeth of genes encoding for molecules/hormones regulating appetite, food intake or obesity could predict successful weight outcome following Roux-en-Y gastric bypass (RYGB).

Methods

Forty-five obese individuals with no known comorbidities were stratified accordingly to weight decrease one-year after RYGB (excess weight loss, EWL ≥ 50%: good responders, GR; EWL < 50%: worse responders, WR). DNAmeth of leptin (LEP), ghrelin (GHRL), ghrelin receptor (GHSR) and insulin-growth factor-2 (IGF2) was assessed before intervention. Single nucleotide polymorphisms of genes affecting DNAmeth, DNMT3A and DNMT3B, were also determined.

Results

At baseline, type 2 diabetes was diagnosed by OGTT in 13 patients. Post-operatively, GR (n = 23) and WR (n = 22) achieved an EWL of 67.7 ± 9.6 vs 38.2 ± 9.0%, respectively. Baseline DNAmeth did not differ between GR and WR for any tested genes, even when the analysis was restricted to subjects with no diabetes. A relationship between GHRL and LEP methylation profiles emerged (r = 0.47, p = 0.001). Searching for correlation between DNAmeth of the studied genes with demographic characteristics and baseline biochemical parameters of the studied population, we observed a correlation between IGF2 methylation and folate (r = 0.44, p = 0.003). Rs11683424 for DNMT3A and rs2424913 for DNMT3B did not correlate with DNAmeth of the studied genes.

Conclusions

In severely obese subjects, the degree of DNAmeth of some genes affecting obesity and related conditions does not work as predictor of successful response to RYGB.

Keywords

Epigenetics DNA methylation Appetite Bariatric surgery 

Notes

Acknowledgements

This study has been supported by two grants from the University of Pisa.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Ethical approval

All procedures performed in human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Research involving human participants and/or animals

The ethics committee of the University of Pisa approved the protocol.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

40618_2018_881_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)

References

  1. 1.
    Schübeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326.  https://doi.org/10.1038/nature14192 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang S, Wu W, Claret FX (2017) Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics 12(3):187–197.  https://doi.org/10.1080/15592294.2016.1273308 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhou P, Wu E, Alam HB, Li Y (2014) Histone cleavage as a mechanism for epigenetic regulation: current insights and perspectives. Curr Mol Med 14(9):1164–1172.  https://doi.org/10.2174/1566524014666141015155630 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hamidi T, Singh AK, Chen T (2015) Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 7(2):247–265.  https://doi.org/10.2217/epi.14.80 CrossRefPubMedGoogle Scholar
  5. 5.
    Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, Akalin A, Schübeler D (2015) Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520(7546):243–247.  https://doi.org/10.1038/nature14176 CrossRefPubMedGoogle Scholar
  6. 6.
    Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jørgensen SW, Brøns C, Jansson PA, Eriksson KF, Pedersen O, Hansen T, Groop L, Stener-Victorin E, Vaag A, Nilsson E, Ling C (2015) Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 24(13):3792–3813.  https://doi.org/10.1093/hmg/ddv124 PubMedGoogle Scholar
  7. 7.
    Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Rönn T, Ling C (2014) Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 10(11):e1004735.  https://doi.org/10.1371/journal.pgen.1004735 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aronica L, Levine AJ, Brennan K, Mi J, Gardner C, Haile RW, Hitchins MP (2017) A systematic review of studies of DNA methylation in the context of a weight loss intervention. Epigenomics 9(5):769–787.  https://doi.org/10.2217/epi-2016-0182 CrossRefPubMedGoogle Scholar
  9. 9.
    Crujeiras AB, Campion J, Díaz-Lagares A, Milagro FI, Goyenechea E, Abete I, Casanueva FF, Martínez JA (2013) Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept 186:1–6.  https://doi.org/10.1016/j.regpep.2013.06.012 CrossRefPubMedGoogle Scholar
  10. 10.
    Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF (2015) Leptin resistance in obesity: an epigenetic landscape. Life Sci 140:57–63.  https://doi.org/10.1016/j.lfs CrossRefPubMedGoogle Scholar
  11. 11.
    Burger KS, Berner LA (2014) A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Physiol Behav 136:121–127.  https://doi.org/10.1016/j.physbeh.2014.04.025 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee JH, Lin L, Xu P, Saito K, Wei Q, Meadows AG, Bongmba OY, Pradhan G, Zheng H, Xu Y, Sun Y (2016) Neuronal deletion of ghrelin receptor almost completely prevents diet-induced obesity. Diabetes 65(8):2169–2178.  https://doi.org/10.2337/db15-1587 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Anderson B, Switzer NJ, Almamar A, Shi X, Birch DW, Karmali S (2013) The impact of laparoscopic sleeve gastrectomy on plasma ghrelin levels: a systematic review. Obes Surg 23(9):1476–1480.  https://doi.org/10.1007/s11695-013-0999-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Siejka A, Jankiewicz-Wika J, Kołomecki K, Cywiński J, Piestrzeniewicz K, Swiętosławski J, Stępień H, Komorowski J (2013) Long-term impact of vertical banded gastroplasty (VBG) on plasma concentration of leptin, soluble leptin receptor, ghrelin, omentin-1, obestatin, and retinol binding protein 4 (RBP4) in patients with severe obesity. Cytokine 64(2):490–493.  https://doi.org/10.1016/j.cyto.2013.07.026 CrossRefPubMedGoogle Scholar
  15. 15.
    Vitolo E, Santini E, Seghieri M, Giannini L, Coppedè F, Rossi C, Dardano A, Solini A (2017) Heterozygosity for the rs696217 SNP in the preproghrelin gene predicts weight loss after bariatric surgery in severely obese individuals. Obes Surg 27(4):961–967.  https://doi.org/10.1007/s11695-016-2387-6 CrossRefPubMedGoogle Scholar
  16. 16.
    Shetty PJ, Movva S, Pasupuleti N, Vedicherlla B, Vattam KK, Venkatasubramanian S, Ahuja YR, Hasan Q (2011) Regulation of IGF2 transcript and protein expression by altered methylation in breast cancer. J Cancer Res Clin Oncol 137(2):339–345.  https://doi.org/10.1007/s00432-010-0890-z CrossRefPubMedGoogle Scholar
  17. 17.
    Nishihara R, Wang M, Qian ZR, Baba Y, Yamauchi M, Mima K, Sukawa Y, Kim SA, Inamura K, Zhang X, Wu K, Giovannucci EL, Chan AT, Fuchs CS, Ogino S, Schernhammer ES (2014) Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region. Am J Clin Nutr 100(6):1479–1488.  https://doi.org/10.3945/ajcn.114.095539 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    St-Pierre J, Hivert MF, Perron P, Poirier P, Guay SP, Brisson D, Bouchard L (2012) IGF2 DNA methylation is a modulator of newborn’s fetal growth and development. Epigenetics 7(10):1125–1132.  https://doi.org/10.4161/epi.21855 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    de Hollanda A, Ruiz T, Jiménez A, Flores L, Lacy A, Vidal J (2015) Patterns of weight loss response following gastric bypass and sleeve gastrectomy. Obes Surg 25(7):1177–1183.  https://doi.org/10.1007/s11695-014-1512-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Farias G, Thieme RD, Teixeira LM, Heyde ME, Bettini SC, Radominski RB (2016) Good weight loss responders and poor weight loss responders after Roux-en-Y gastric bypass: clinical and nutritional profiles. Nutr Hosp 33(5):574.  https://doi.org/10.20960/nh.574 CrossRefPubMedGoogle Scholar
  21. 21.
    Wojdacz TK, Dobrovic A, Hansen LL (2008) Methylation-sensitive high-resolution melting. Nat Protoc 3(12):1903–1908.  https://doi.org/10.1038/nprot.2008.191 CrossRefPubMedGoogle Scholar
  22. 22.
    Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431.  https://doi.org/10.1093/bioinformatics/18.11.1427 CrossRefPubMedGoogle Scholar
  23. 23.
    Murphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, Schildkraut JM, Murtha AP, Iversen ES, Hoyo C (2012) Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494(1):36–43.  https://doi.org/10.1016/j.gene.2011.11.062 CrossRefPubMedGoogle Scholar
  24. 24.
    Migheli F, Stoccoro A, Coppedè F, Wan Omar WA, Failli A, Consolini R, Seccia M, Spisni R, Miccoli P, Mathers JC, Migliore L (2013) Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PLoS One 8(1):e52501.  https://doi.org/10.1371/journal.pone.0052501 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pishva E, Drukker M, Viechtbauer W, Decoster J, Collip D, van Winkel R, Wichers M, Jacobs N, Thiery E, Derom C, Geschwind N, van den Hove D, Lataster T, Myin-Germeys I, van Os J, Rutten BP, Kenis G (2014) Epigenetic genes and emotional reactivity to daily life events: a multi-step gene-environment interaction study. PLoS One 9(6):e100935.  https://doi.org/10.1371/journal.pone.0100935 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nicoletti CF, Nonino CB, de Oliveira BA, Pinhel MA, Mansego ML, Milagro FI, Zulet MA, Martinez JA (2016) DNA Methylation and hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes Surg 26(3):603–611.  https://doi.org/10.1007/s11695-015-1802-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Guénard F, Tchernof A, Deshaies Y, Pérusse L, Biron S, Lescelleur O, Biertho L, Marceau S, Vohl MC (2014) Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiol Genom 46(6):216–222.  https://doi.org/10.1152/physiolgenomics.00160.2013 CrossRefGoogle Scholar
  28. 28.
    Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H (2016) Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight 1(19):e87748.  https://doi.org/10.1172/jci.insight.87748 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, Martinez JA (2011) Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem 67(3):463–470.  https://doi.org/10.1007/s13105-011-0084-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Allard C, Desgagné V, Patenaude J, Lacroix M, Guillemette L, Battista MC, Doyon M, Ménard J, Ardilouze JL, Perron P, Bouchard L, Hivert MF (2015) Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics 10(4):342–351.  https://doi.org/10.1080/15592294.2015.1029700 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    García-Cardona MC, Huang F, García-Vivas JM, López-Camarillo C, Del Río Navarro BE, Navarro Olivos E, Hong-Chong E, Bolaños-Jiménez F, Marchat LA (2014) DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance. Int J Obes (Lond) 38(11):1457–1465.  https://doi.org/10.1038/ijo.2014.30 CrossRefGoogle Scholar
  32. 32.
    Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF, Kurtzberg J, Murtha A, Jirtle RL, Schildkraut JM, Hoyo C (2015) Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond) 39(4):650–657.  https://doi.org/10.1038/ijo.2013.193 CrossRefGoogle Scholar
  33. 33.
    Berglind D, Müller P, Willmer M, Sinha I, Tynelius P, Näslund E, Dahlman-Wright K, Rasmussen F (2016) Differential methylation in inflammation and type 2 diabetes genes in siblings born before and after maternal bariatric surgery. Obesity 24(1):250–261.  https://doi.org/10.1002/oby.21340 CrossRefPubMedGoogle Scholar
  34. 34.
    Navarro E, Funtikova AN, Fíto M, Schröder H (2017) Prenatal nutrition and the risk of adult obesity: long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem 39:1–14.  https://doi.org/10.1016/j.jnutbio.2016.03.012 CrossRefPubMedGoogle Scholar
  35. 35.
    Li H, Li W, Liu S, Zong S, Wang W, Ren J, Li Q, Hou F, Shi Q (2016) DNMT1, DNMT3A and DNMT3B polymorphisms associated with gastric cancer risk: a systematic review and meta-analysis. EBioMedicine 13:125–131.  https://doi.org/10.1016/j.ebiom.2016.10.028 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Duan F, Cui S, Song C, Dai L, Zhao X, Zhang X (2015) Systematic evaluation of cancer risk associated with DNMT3B polymorphisms. J Cancer Res Clin Oncol 141:1205–1220.  https://doi.org/10.1007/s00432-014-1894-x CrossRefPubMedGoogle Scholar
  37. 37.
    Tang Q, Chen Y, Wu W, Ding H, Xia Y, Chen D, Wang X (2017) Idiopathic male infertility and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. Sci Rep 7:11219.  https://doi.org/10.1038/s41598-017-11636-9 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Coppedè F, Bosco P, Tannorella P, Romano C, Antonucci I, Stuppia L, Romano C, Migliore L (2013) DNMT3B promoter polymorphisms and maternal risk of birth of a child with Down syndrome. Hum Reprod 28:545–550.  https://doi.org/10.1093/humrep/des376 CrossRefPubMedGoogle Scholar
  39. 39.
    Cai TT, Zhang J, Wang X, Song RH, Qin Q, Muhali FS, Zhou JZ, Xu J, Zhang JA (2016) Gene-gene and gene-sex epistatic interactions of DNMT1, DNMT3A and DNMT3B in autoimmune thyroid disease. Endocr J 63:643–653.  https://doi.org/10.1507/endocrj CrossRefPubMedGoogle Scholar
  40. 40.
    Tajuddin SM, Amaral AF, Fernández AF, Rodríguez-Rodero S, Rodríguez RM, Moore LE, Tardón A, Carrato A, García-Closas M, Silverman DT, Jackson BP, García-Closas R, Cook AL, Cantor KP, Chanock S, Kogevinas M, Rothman N, Real FX, Fraga MF, Malats N, Spanish Bladder Cancer/EPICURO Study Investigators (2013) Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect 121:650–656.  https://doi.org/10.1289/ehp.1206068 PubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2018

Authors and Affiliations

  1. 1.Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
  2. 2.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
  3. 3.Department of Surgical, Medical, Molecular and Critical Area PathologyUniversity of PisaPisaItaly

Personalised recommendations