Skip to main content

Advertisement

Log in

Thyroid dysfunctions secondary to cancer immunotherapy

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Immunotherapy is a firmly established pillar in the treatment of cancer, alongside the traditional approaches of surgery, radiotherapy, and chemotherapy. Like every treatment, also cancer immunotherapy causes a diverse spectrum of side effects, collectively referred to as immune-related adverse events.

Objective

This review will examine the main forms of immunotherapy, the proposed mechanism(s) of action, and the incidence of thyroid dysfunctions.

Methods

A comprehensive MEDLINE search was performed for articles published up to March 30, 2017.

Results

Following the pioneering efforts with administration of cytokines such as IL-2 and IFN-g, which caused a broad spectrum of thyroid dysfunctions (ranging in incidence from 1 to 50%), current cancer immunotherapy strategies comprise immune checkpoint inhibitors, oncolytic viruses, adoptive T-cell transfer, and cancer vaccines. Oncolytic viruses, adoptive T-cell transfer, and cancer vaccines cause thyroid dysfunctions only rarely. In contrast, immune checkpoint blockers (such as anti-CTLA-4, anti-PD-1, anti-PD-L1) are associated with a high risk of thyroid autoimmunity. This risk is highest for anti-PD-1 and increases further when a combination of checkpoint inhibitors is used.

Conclusions

Cancer patients treated with monoclonal antibodies that block immune checkpoint inhibitors are at risk of developing thyroid dysfunctions. Their thyroid status should be assessed at baseline and periodically after initiation of the immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 105:487–511

    Article  Google Scholar 

  2. Bickels J, Kollender Y, Merinsky O, Meller I (2002) Coley’s toxin: historical perspective. Isr Med Assoc J 4(6):471–472

    PubMed  Google Scholar 

  3. Pearl R (1929) Cancer and tuberculosis. Am J Hygiene 9(1):97–159

    Google Scholar 

  4. Old LJ, Clarke DA, Benacerraf B (1959) Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 184(Suppl 5):291–292

    Article  PubMed  Google Scholar 

  5. Morales A, Eidinger D, Bruce AW (1976) Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 116(2):180–183

    Article  PubMed  CAS  Google Scholar 

  6. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nat Rev Urol 11(3):153–162. https://doi.org/10.1038/nrurol.2014.15

    Article  PubMed  CAS  Google Scholar 

  7. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. https://doi.org/10.1126/science.1235122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, Eggermont AM, Fearon DT, Fridman WH, Fucikova J, Gabrilovich DI, Galon J, Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, Jager D, Kalinski P, Karre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, Sautes-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, Zitvogel L, Zou W, Kroemer G (2014) Classification of current anticancer immunotherapies. Oncotarget 5(24):12472–12508. https://doi.org/10.18632/oncotarget.2998

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lotze MTCA, Chang A, Seipp CA, Simpson C, Vetto JT, Rosenberg SA (1986) High-dose recombinant interleukin-2 in the treatment of patients with disseminated cancer. JAMA 256:3117–3124

    Article  PubMed  CAS  Google Scholar 

  11. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155(6):1823–1841

    Article  PubMed  CAS  Google Scholar 

  12. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313(23):1485–1492. https://doi.org/10.1056/nejm198512053132327

    Article  PubMed  CAS  Google Scholar 

  13. Atkins MBMJ, Parkinson DR, Gould JA, Berkman EM, Kaplan M (1988) Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N Engl J Med 318:1557–1563

    Article  PubMed  CAS  Google Scholar 

  14. Kruit WHBR, Goey SH, Jansen RL, Eggermont AM, Batchelor D, Schmitz PI, Stoter G (1993) Interleukin-2-induced thyroid dysfunction is correlated with treatment duration but not with tumor response. J Clin Oncol 11:921–924

    Article  PubMed  CAS  Google Scholar 

  15. Tartour ESM, Dorval T, Baudin E, Fridman WH (1995) Endocrine involvement in immunotherapy. Ann Endocrinol 56:143–148

    CAS  Google Scholar 

  16. Vassilopoulou-Sellin RSA, Dexeus FH, Theriault RL, Pololoff DA (1992) Acute thyroid dysfunction (thyroiditis) after therapy with interleukin-2. Horm Metab Res 24:434–438

    Article  PubMed  CAS  Google Scholar 

  17. Tartour E, Schlumberger M, Dorval T, Baudin E, Fridman WH (1995) Endocrine involvement in immunotherapy. Ann Endocrinol (Paris) 56(2):143–148

    CAS  Google Scholar 

  18. Vassilopoulou-Sellin R, Sella A, Dexeus FH, Theriault RL, Pololoff DA (1992) Acute thyroid dysfunction (thyroiditis) after therapy with interleukin-2. Horm Metab Res 24(9):434–438. https://doi.org/10.1055/s-2007-1003353

    Article  PubMed  CAS  Google Scholar 

  19. Fentiman IS, Balkwill FR, Thomas BS, Russell MJ, Todd I, Bottazzo GF (1988) An autoimmune aetiology for hypothyroidism following interferon therapy for breast cancer. Eur J Cancer Clin Oncol 24(8):1299–1303

    Article  PubMed  CAS  Google Scholar 

  20. Lowndes SA, Asher R, Middleton MR (2010) Thyrotoxicosis with pegylated interferon alfa-2b. Arch Dermatol 146(11):1273–1275. https://doi.org/10.1001/archdermatol.2010.306

    Article  PubMed  Google Scholar 

  21. Scalzo S, Gengaro A, Boccoli G, Masciulli R, Giannella G, Salvo G, Marolla P, Carlini P, Massimini G, Holdener EE et al (1990) Primary hypothyroidism associated with interleukin-2 and interferon alpha-2 therapy of melanoma and renal carcinoma. Eur J Cancer 26(11–12):1152–1156

    Article  PubMed  CAS  Google Scholar 

  22. Atkins MB, Mier JW, Parkinson DR, Gould JA, Berkman EM, Kaplan MM (1988) Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N Engl J Med 318(24):1557–1563. https://doi.org/10.1056/nejm198806163182401

    Article  PubMed  CAS  Google Scholar 

  23. Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147(927):258–267

    Article  PubMed  CAS  Google Scholar 

  24. Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R, Walter MR, Nagabhushan TL, Trotta PP, Pestka S (1998) Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res 58(12):2489–2499

    PubMed  CAS  Google Scholar 

  25. Baron S, Tyring SK, Fleischmann WR Jr, Coppenhaver DH, Niesel DW, Klimpel GR, Stanton GJ, Hughes TK (1991) The interferons: mechanisms of action and clinical applications. JAMA 266(10):1375–1383

    Article  PubMed  CAS  Google Scholar 

  26. Bhargava P, Newsome SD (2016) An update on the evidence base for peginterferon beta-1a in the treatment of relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord 9(6):483–490. https://doi.org/10.1177/1756285616656296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rotondi M, Oliviero A, Profice P, Mone CM, Biondi B, Del Buono A, Mazziotti G, Sinisi AM, Bellastella A, Carella C (1998) Occurrence of thyroid autoimmunity and dysfunction throughout a nine-month follow-up in patients undergoing interferon-beta therapy for multiple sclerosis. J Endocrinol Invest 21(11):748–752

    Article  PubMed  CAS  Google Scholar 

  28. Mandac JC, Chaudhry S, Sherman KE, Tomer Y (2006) The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 43(4):661–672. https://doi.org/10.1002/hep.21146

    Article  PubMed  CAS  Google Scholar 

  29. Agarwala SS, Kirkwood JM (2002) Update on adjuvant interferon therapy for high-risk melanoma. Oncology 16(9):1177–1187 (discussion 1190-1172, 1197)

    PubMed  Google Scholar 

  30. Jonasch E, Haluska FG (2001) Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6(1):34–55

    Article  PubMed  CAS  Google Scholar 

  31. Mazziotti G, Sorvillo F, Stornaiuolo G, Rotondi M, Morisco F, Ruberto M, Cioffi M, Amato G, Caporaso N, Gaeta GB, Carella C (2002) Temporal relationship between the appearance of thyroid autoantibodies and development of destructive thyroiditis in patients undergoing treatment with two different type-1 interferons for HCV-related chronic hepatitis: a prospective study. J Endocrinol Invest 25(7):624–630. https://doi.org/10.1007/BF03345087

    Article  PubMed  CAS  Google Scholar 

  32. Prummel MF, Laurberg P (2003) Interferon-alpha and autoimmune thyroid disease. Thyroid 13(6):547–551. https://doi.org/10.1089/105072503322238809

    Article  PubMed  CAS  Google Scholar 

  33. Csaki AC, Blum M (2000) Thyrotoxicosis after interferon-alpha therapy. Thyroid 10(1):101. https://doi.org/10.1089/thy.2000.10.101

    Article  PubMed  CAS  Google Scholar 

  34. Wong V, Fu AX, George J, Cheung NW (2002) Thyrotoxicosis induced by alpha-interferon therapy in chronic viral hepatitis. Clin Endocrinol (Oxf) 56(6):793–798

    Article  CAS  Google Scholar 

  35. Braga-Basaria M, Basaria S (2003) Interferon-alpha-induced transient severe hypothyroidism in a patient with Graves’ disease. J Endocrinol Invest 26(3):261–264. https://doi.org/10.1007/BF03345167

    Article  PubMed  CAS  Google Scholar 

  36. Rotondi M, Mazziotti G, Biondi B, Manganella G, Del Buono AD, Montella P, Di Cristofaro M, Di Iorio G, Amato G, Carella C (2000) Long-term treatment with interferon-beta therapy for multiple sclerosis and occurrence of Grave’s disease. J Endocrinol Invest 23(5):321–324

    Article  PubMed  CAS  Google Scholar 

  37. Fentiman IS, Thomas BS, Balkwill FR, Rubens RD, Hayward JL (1985) Primary hypothyroidism associated with interferon therapy of breast cancer. Lancet 1(8438):1166

    Article  PubMed  CAS  Google Scholar 

  38. Carella C, Mazziotti G, Amato G, Braverman LE, Roti E (2004) Clinical review 169: interferon-alpha-related thyroid disease: pathophysiological, epidemiological, and clinical aspects. J Clin Endocrinol Metab 89(8):3656–3661. https://doi.org/10.1210/jc.2004-0627

    Article  PubMed  CAS  Google Scholar 

  39. Ward DL, Bing-You RG (2001) Autoimmune thyroid dysfunction induced by interferon-alpha treatment for chronic hepatitis C: screening and monitoring recommendations. Endocr Pract 7(1):52–58. https://doi.org/10.4158/EP.7.1.52

    Article  PubMed  CAS  Google Scholar 

  40. Koh LK, Greenspan FS, Yeo PP (1997) Interferon-alpha induced thyroid dysfunction: three clinical presentations and a review of the literature. Thyroid 7(6):891–896. https://doi.org/10.1089/thy.1997.7.891

    Article  PubMed  CAS  Google Scholar 

  41. Bottazzo GF, Pujol-Borrell R, Hanafusa T, Feldmann M (1983) Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet 2(8359):1115–1119

    Article  PubMed  CAS  Google Scholar 

  42. Soldevila B, Alonso N, Martinez-Arconada MJ, Granada ML, Boada A, Vallejois V, Fraile M, Fernàndez-Sanmartin MA, Pujol-Borrel R, Puig-Domingo M, Sanmarti A, Martinez-Càceres (2013) Regulatory T cells and other lymphocyte subpopulations in patients with melanoma developing interferon-induced thyroiditis during high-dose interferon-alfa 2b treatment. Clin Endocrinol 78:621–628

    Article  CAS  Google Scholar 

  43. Palacios-Alvarez I, Roman-Curto C, Mir-Bonafe JM, Canueto J, Usero-Barcena T, Fernandez-Lopez E (2015) Autoimmune response as a side effect of treatment with interferon-alpha in melanoma: does this have prognostic implications? Int J Dermatol 54(3):e91–e93. https://doi.org/10.1111/ijd.12698

    Article  PubMed  CAS  Google Scholar 

  44. Morganstein DL, Lai Z, Spain L, Diem S, Levine D, Mace C, Gore M, Larkin J (2017) Thyroid abnormalities following the use of cytotoxic T-lymphocyte antigen-4 and programmed death receptor protein-1 inhibitors in the treatment of melanoma. Clin Endocrinol (Oxf) 86(4):614–620. https://doi.org/10.1111/cen.13297

    Article  CAS  Google Scholar 

  45. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532. https://doi.org/10.1056/NEJMoa1503093

    Article  PubMed  CAS  Google Scholar 

  46. Abdel-Rahman O, ElHalawani H, Fouad M (2016) Risk of endocrine complications in cancer patients treated with immune check point inhibitors: a meta-analysis. Future Oncol 12(3):413–425. https://doi.org/10.2217/fon.15.222

    Article  PubMed  CAS  Google Scholar 

  47. Bertrand A, Kostine M, Barnetche T, Truchetet ME, Schaeverbeke T (2015) Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med 13:211. https://doi.org/10.1186/s12916-015-0455-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. de Filette J, Jansen Y, Schreuer M, Everaert H, Velkeniers B, Neyns B, Bravenboer B (2016) Incidence of thyroid-related adverse events in melanoma patients treated with pembrolizumab. J Clin Endocrinol Metab 101(11):4431–4439. https://doi.org/10.1210/jc.2016-2300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Delivanis DA, Gustafson MP, Bornschlegl S, Merten MM, Kottschade L, Withers S, Dietz AB, Ryder M (2017) Pembrolizumab-induced thyroiditis. Comprehensive clinical review and insights into underlying involved mechanisms. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2017-00448

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gonzalez-Rodriguez E, Rodriguez-Abreu D (2016) Immune checkpoint inhibitors: review and management of endocrine adverse events. Oncologist 21(7):804–816. https://doi.org/10.1634/theoncologist.2015-0509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Osorio JC, Ni A, Chaft JE, Pollina R, Kasler MK, Stephens D, Rodriguez C, Cambridge L, Rizvi H, Wolchok JD, Merghoub T, Rudin CM, Fish S, Hellmann MD (2017) Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol 28(3):583–589. https://doi.org/10.1093/annonc/mdw640

    Article  PubMed  CAS  Google Scholar 

  52. Ryder M, Callahan M, Postow MA, Wolchok J, Fagin JA (2014) Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer 21(2):371–381. https://doi.org/10.1530/erc-13-0499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Torino F, Barnabei A, Paragliola R, Baldelli R, Appetecchia M, Corsello SM (2013) Thyroid dysfunction as an unintended side effect of anticancer drugs. Thyroid 23(11):1345–1366. https://doi.org/10.1089/thy.2013.0241

    Article  PubMed  CAS  Google Scholar 

  54. Villadolid J, Amin A (2015) Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. Transl Lung Cancer Res 4(5):560–575. https://doi.org/10.3978/j.issn.2218-6751.2015.06.06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Min L, Vaidya A, Becker C (2011) Thyroid autoimmunity and ophthalmopathy related to melanoma biological therapy. Eur J Endocrinol 164(2):303–307. https://doi.org/10.1530/eje-10-0833

    Article  PubMed  CAS  Google Scholar 

  56. Alhusseini M, Samantray J (2017) Hypothyroidism in cancer patients on immune checkpoint inhibitors with anti-PD1 agents: insights on underlying mechanisms. Exp Clin Endocrinol Diabetes 125(4):267–269. https://doi.org/10.1055/s-0042-119528

    Article  PubMed  CAS  Google Scholar 

  57. Narita T, Oiso N, Taketomo Y, Okahashi K, Yamauchi K, Sato M, Uchida S, Matsuda H, Kawada A (2016) Serological aggravation of autoimmune thyroid disease in two cases receiving nivolumab. J Dermatol 43(2):210–214. https://doi.org/10.1111/1346-8138.13028

    Article  PubMed  Google Scholar 

  58. Yamauchi I, Sakane Y, Fukuda Y, Fujii T, Taura D, Hirata M, Hirota K, Ueda Y, Kanai Y, Yamashita Y, Kondo E, Sone M, Yasoda A, Inagaki N (2017) Clinical features of nivolumab-induced thyroiditis: a case series study. Thyroid 27(7):894–901. https://doi.org/10.1089/thy.2016.0562

    Article  PubMed  CAS  Google Scholar 

  59. Freeman-Keller M, Kim Y, Cronin H, Richards A, Gibney G, Weber JS (2016) Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res 22(4):886–894. https://doi.org/10.1158/1078-0432.ccr-15-1136

    Article  PubMed  CAS  Google Scholar 

  60. Raedler LA (2015) Keytruda (pembrolizumab): first PD-1 inhibitor approved for previously treated unresectable or metastatic melanoma. Am Health Drug Benefits 8(Spec Feature):96–100

    PubMed  PubMed Central  Google Scholar 

  61. Raedler LA (2015) Opdivo (nivolumab): second PD-1 inhibitor receives FDA approval for unresectable or metastatic melanoma. Am Health Drug Benefits 8(Spec Feature):180–183

    PubMed  PubMed Central  Google Scholar 

  62. Morris GP, Brown NK, Kong YC (2009) Naturally-existing CD4(+)CD25(+)Foxp3(+) regulatory T cells are required for tolerance to experimental autoimmune thyroiditis induced by either exogenous or endogenous autoantigen. J Autoimmun 33(1):68–76. https://doi.org/10.1016/j.jaut.2009.03.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242. https://doi.org/10.1111/j.1600-065X.2010.00923.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, Seja E, Kivork C, Siebert J, Kaplan-Lefko P, Wang X, Chmielowski B, Glaspy JA, Tumeh PC, Chodon T, Pe’er D, Comin-Anduix B (2016) PD-1 blockade expands intratumoral memory T Cells. Cancer Immunol Res 4(3):194–203. https://doi.org/10.1158/2326-6066.cir-15-0210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P (2014) Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 6(230):230ra245. https://doi.org/10.1126/scitranslmed.3008002

    Article  CAS  Google Scholar 

  66. Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14(9):642–662. https://doi.org/10.1038/nrd4663

    Article  PubMed  CAS  Google Scholar 

  67. Mavani HJ, Wick JY (2016) Oncology’s trojan horse: using viruses to battle cancer. Consult Pharm 31(12):676–684. https://doi.org/10.4140/TCP.n.2016.676

    Article  PubMed  Google Scholar 

  68. Greig SL (2016) Talimogene Laherparepvec: first global approval. Drugs 76(1):147–154. https://doi.org/10.1007/s40265-015-0522-7

    Article  PubMed  CAS  Google Scholar 

  69. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH Jr, Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS (2015) Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788. https://doi.org/10.1200/JCO.2014.58.3377

    Article  PubMed  CAS  Google Scholar 

  70. Harrington KJ, Andtbacka RH, Collichio F, Downey G, Chen L, Szabo Z, Kaufman HL (2016) Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVM1a melanoma: subanalysis of the phase III OPTiM trial. OncoTargets Ther 9:7081–7093. https://doi.org/10.2147/ott.s115245

    Article  CAS  Google Scholar 

  71. FDA (2014) Talimogene laherparepvec BLA 125518 pharmacovigilance plan: review memorandum

  72. Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, Chastain M, Gorski KS, Anderson A, Chou J, Kaufman HL, Andtbacka RH (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol 34(22):2619–2626. https://doi.org/10.1200/JCO.2016.67.1529

    Article  PubMed  CAS  Google Scholar 

  73. Fukuhara H, Ino Y, Todo T (2016) Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 107(10):1373–1379. https://doi.org/10.1111/cas.13027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, Moon A, Mun JH, Sommermann EM, Avidal LM, Patt R, Pelusio A, Burke J, Hwang TH, Kirn D, Park YS (2015) Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer. Mol Ther 23(9):1532–1540. https://doi.org/10.1038/mt.2015.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Gong J, Sachdev E, Mita AC, Mita MM (2016) Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 6(1):25–42. https://doi.org/10.5662/wjm.v6.i1.25

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hinrichs CSRS (2014) Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 257:56–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752. https://doi.org/10.1038/nm.3161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Tran ETS, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR, Yang JC, Rosenberg SA (2014) Cancer immunotherapy based on mutation-specific CD4 + T cells in a patient with epithelial cancer. Science 344:641–645

    Article  PubMed  CAS  Google Scholar 

  79. Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, Rosenberg SA (2017) Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res 23(10):2491–2505. https://doi.org/10.1158/1078-0432.CCR-16-2680

    Article  PubMed  CAS  Google Scholar 

  80. Goff SLDM, Citrin DE, Somerville RP, Wunderlich JR, Danforth DN, Zlott DA, Yang JC, Sherry RM, Kammula US, Klebanoff CA, Hughes MS, Restifo NP, Langhan MM, Shelton TE, Lu L, Kwong ML, Ilyas S, Klemen ND, Payabyab EC, Morton KE, Toomey MA, Steinberg SM, White DE, Rosenberg SA (2016) Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 34:2389–2397

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rosenberg SAPB, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, Simpson C, Carter C, Bock S, Schwartzentruber D, Wei JP, White DE (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680

    Article  PubMed  CAS  Google Scholar 

  82. Seaman BJGE, Brewer CC, Zalewski CK, King KA, Rudy S, Van Waes C, Morgan RA, Dudley ME, Yang JC, Rosenberg SA, Kim HJ (2012) Audiovestibular dysfunction associated with adoptive cell immunotherapy for melanoma. Otolaryngol Head Neck Surg 147:744–749

    Article  PubMed  Google Scholar 

  83. Yeh SKN, Kerkar SP, Heller CK, Palmer DC, Johnson LA, Li Z, Bishop RJ, Wong WT, Sherry RM, Yang JC, Dudley ME, Restifo NP, Rosenberg SA, Nussenblatt RB (2009) Ocular and systemic autoimmunity after successful tumor-infiltrating lymphocyte immunotherapy for recurrent, metastatic melanoma. Ophthalmology 116:981–989

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 90(8):3539–3543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, Sterman DH, Hassan R, Lutz E, Moyer B, Giedlin M, Louis JL, Sugar EA, Pons A, Cox AL, Levine J, Murphy AL, Illei P, Dubensky TW Jr, Eiden JE, Jaffee EM, Laheru DA (2012) A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res 18(3):858–868. https://doi.org/10.1158/1078-0432.CCR-11-2121

    Article  PubMed  CAS  Google Scholar 

  86. Wood CG, Mulders P (2009) Vitespen: a preclinical and clinical review. Future Oncol 5(6):763–774. https://doi.org/10.2217/fon.09.46

    Article  PubMed  CAS  Google Scholar 

  87. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. https://doi.org/10.1056/NEJMoa1001294

    Article  PubMed  CAS  Google Scholar 

  88. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, Mellstedt H (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11(9):509–524. https://doi.org/10.1038/nrclinonc.2014.111

    Article  PubMed  CAS  Google Scholar 

  89. Diefenbach CS, Gnjatic S, Sabbatini P, Aghajanian C, Hensley ML, Spriggs DR, Iasonos A, Lee H, Dupont B, Pezzulli S, Jungbluth AA, Old LJ, Dupont J (2008) Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin Cancer Res 14(9):2740–2748. https://doi.org/10.1158/1078-0432.ccr-07-4619

    Article  PubMed  CAS  Google Scholar 

  90. Vita R, Guarneri F, Agah R, Benvenga S (2014) Autoimmune thyroid disease elicited by NY-ESO-1 vaccination. Thyroid 24(2):390–394. https://doi.org/10.1089/thy.2013.0170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chee R, Agah R, Vita R, Benvenga S (2014) L-carnitine treatment in a seriously ill cancer patient with severe hyperthyroidism. Hormones (Athens) 13(3):407–412. https://doi.org/10.14310/horm.2002.1494

    Article  Google Scholar 

  92. Chianese-Bullock KA, Woodson EM, Tao H, Boerner SA, Smolkin M, Grosh WW, Neese PY, Merrill P, Petroni GR, Slingluff CL Jr (2005) Autoimmune toxicities associated with the administration of antitumor vaccines and low-dose interleukin-2. J Immunother 28(4):412–419

    Article  PubMed  CAS  Google Scholar 

  93. McNeel DG, Knutson KL, Schiffman K, Davis DR, Caron D, Disis ML (2003) Pilot study of an HLA-A2 peptide vaccine using flt3 ligand as a systemic vaccine adjuvant. J Clin Immunol 23(1):62–72

    Article  PubMed  CAS  Google Scholar 

  94. De Remigis A, de Gruijl TD, Uram JN, Tzou SC, Iwama S, Talor MV, Armstrong TD, Santegoets SJ, Slovin SF, Zheng L, Laheru DA, Jaffee EM, Gerritsen WR, van den Eertwegh AJ, Le DT, Caturegli P (2015) Development of thyroglobulin antibodies after GVAX immunotherapy is associated with prolonged survival. Int J Cancer 136(1):127–137. https://doi.org/10.1002/ijc.28973

    Article  PubMed  CAS  Google Scholar 

  95. Tarhini AA, Shin D, Lee SJ, Stuckert J, Sander CA, Kirkwood JM (2014) Serologic evidence of autoimmunity in E2696 and E1694 patients with high-risk melanoma treated with adjuvant interferon alfa. Melanoma Res 24(2):150–157. https://doi.org/10.1097/cmr.0000000000000050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hall SJ, Klotz L, Pantuck AJ, George DJ, Whitmore JB, Frohlich MW, Sims RB (2011) Integrated safety data from 4 randomized, double-blind, controlled trials of autologous cellular immunotherapy with sipuleucel-T in patients with prostate cancer. J Urol 186(3):877–881. https://doi.org/10.1016/j.juro.2011.04.070

    Article  PubMed  CAS  Google Scholar 

  97. Yang L, Yu H, Dong S, Zhong Y, Hu S (2017) Recognizing and managing on toxicities in cancer immunotherapy. Tumour Biol 39(3):1010428317694542. https://doi.org/10.1177/1010428317694542

    Article  PubMed  Google Scholar 

  98. Testori A, Richards J, Whitman E, Mann GB, Lutzky J, Camacho L, Parmiani G, Tosti G, Kirkwood JM, Hoos A, Yuh L, Gupta R, Srivastava PK (2008) Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 26(6):955–962. https://doi.org/10.1200/jco.2007.11.9941

    Article  PubMed  CAS  Google Scholar 

  99. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S, Mulders P, Zielinski H, Hoos A, Teofilovici F, Isakov L, Flanigan R, Figlin R, Gupta R, Escudier B, Group CRS (2008) An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372(9633):145–154. https://doi.org/10.1016/S0140-6736(08)60697-2

    Article  PubMed  CAS  Google Scholar 

  100. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New Engl J Med 373(1):23–34. https://doi.org/10.1056/NEJMoa1504030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, Sharma P, Pal SK, Razak ARA, Kollmannsberger C, Heng DYC, Spratlin J, McHenry MB, Amin A (2017) Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol. https://doi.org/10.1200/jco.2016.72.1985

    Article  PubMed  Google Scholar 

  102. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, Ready NE, Gerber DE, Chow LQ, Juergens RA, Shepherd FA, Laurie SA, Geese WJ, Agrawal S, Young TC, Li X, Antonia SJ (2017) Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 18(1):31–41. https://doi.org/10.1016/s1470-2045(16)30624-6

    Article  PubMed  CAS  Google Scholar 

  103. McDermott D, Haanen J, Chen TT, Lorigan P, O’Day S, Investigators MDX (2013) Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann Oncol 24(10):2694–2698. https://doi.org/10.1093/annonc/mdt291

    Article  PubMed  CAS  Google Scholar 

  104. Madan RA, Mohebtash M, Arlen PM, Vergati M, Rauckhorst M, Steinberg SM, Tsang KY, Poole DJ, Parnes HL, Wright JJ, Dahut WL, Schlom J, Gulley JL (2012) Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13(5):501–508. https://doi.org/10.1016/S1470-2045(12)70006-2

    Article  PubMed  CAS  Google Scholar 

  105. Gibney GT, Kudchadkar RR, DeConti RC, Thebeau MS, Czupryn MP, Tetteh L, Eysmans C, Richards A, Schell MJ, Fisher KJ, Horak CE, Inzunza HD, Yu B, Martinez AJ, Younos I, Weber JS (2015) Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin Cancer Res 21(4):712–720. https://doi.org/10.1158/1078-0432.CCR-14-2468

    Article  PubMed  CAS  Google Scholar 

  106. Weber J, Gibney G, Kudchadkar R, Yu B, Cheng P, Martinez AJ, Kroeger J, Richards A, McCormick L, Moberg V, Cronin H, Zhao X, Schell M, Chen YA (2016) Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer Immunol Res 4(4):345–353. https://doi.org/10.1158/2326-6066.CIR-15-0193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Caturegli.

Ethics declarations

Funding

The study was supported by NIH Grant RO1 CA-194042 to PC.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalan, P., Di Dalmazi, G., Pani, F. et al. Thyroid dysfunctions secondary to cancer immunotherapy. J Endocrinol Invest 41, 625–638 (2018). https://doi.org/10.1007/s40618-017-0778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0778-8

Keywords

Navigation