Skip to main content
Log in

Reduction of calprotectin and phosphate during testosterone therapy in aging men: a randomized controlled trial

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objectives

To investigate the effect of testosterone treatment on biomarkers calprotectin, fibroblast growth factor 23 (FGF23), soluble Klotho, phosphate, calcium, parathyroid hormone, creatinine and estimated glomerular filtration rate.

Design

Randomized, double-blinded, placebo-controlled study.

Setting

Odense Androgen Study—the effect of Testim and training in hypogonadal men.

Participants

Men aged 60–78 years old with a low normal concentration of free of bioavailable testosterone <7.3 nmol/L and waist circumference >94 cm recruited from 2008 to 2009 (N = 48) by advertisement.

Intervention

Participants were randomized to receive 5–10 g gel/50–100 mg testosterone (Testim®, Ipsen, France) or 5–10 g gel/placebo.

Results

The plasma levels of calprotectin and phosphate were significantly reduced in the group receiving testosterone therapy (gel) compared to the placebo group (p < 0.05). Testosterone treatment did not have any significant effect on plasma levels of FGF23 or soluble Klotho. The reduction in phosphate levels was inversely associated with bioavailable testosterone.

Conclusion

Compared to the placebo group, 6 months of testosterone therapy (gel) reduced calprotectin and phosphate levels suggesting decreased inflammation and decreased cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amory JK, Watts NB, Easley KA et al (2004) Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab 89:503–510. doi:10.1210/jc.2003-031110

    Article  CAS  PubMed  Google Scholar 

  2. Traish AM, Saad F, Feeley RJ, Guay A (2009) The dark side of testosterone deficiency: III. Cardiovascular disease. J Androl 30:477–494. doi:10.2164/jandrol.108.007245

    Article  CAS  PubMed  Google Scholar 

  3. Traish AM, Saad F, Guay A (2008) The dark side of testosterone deficiency: II. Type 2 diabetes and insulin resistance. J Androl 30:23–32. doi:10.2164/jandrol.108.005751

    Article  PubMed  Google Scholar 

  4. Corona G, Rastrelli G, Vignozzi L et al (2012) How to recognize late-onset hypogonadism in men with sexual dysfunction. Asian J Androl 14:251–259. doi:10.1038/aja.2011.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morgentaler A, Miner MM, Caliber M et al (2015) Testosterone therapy and cardiovascular risk: advances and controversies. Mayo Clin Proc 90:224–251. doi:10.1016/j.mayocp.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  6. Spitzer M, Huang G, Basaria S et al (2013) Risks and benefits of testosterone therapy in older men. Nat Rev Endocrinol 9:414–424. doi:10.1038/nrendo.2013.73

    Article  CAS  PubMed  Google Scholar 

  7. Corrales JJ (2006) Androgen-replacement therapy depresses the ex vivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men with partial androgen deficiency. J Endocrinol 189:595–604. doi:10.1677/joe.1.06779

    Article  CAS  PubMed  Google Scholar 

  8. Malkin CJ, Pugh PJ, Jones RD et al (2004) The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 89:3313–3318. doi:10.1210/jc.2003-031069

    Article  CAS  PubMed  Google Scholar 

  9. Frederiksen L, Glintborg D, Højlund K et al (2012) Osteoprotegerin levels decrease during testosterone therapy in aging men and are associated with changed distribution of regional fat. Horm Metab Res 45:308–313. doi:10.1055/s-0032-1323647

    Article  PubMed  Google Scholar 

  10. Basaria S, Davda MN, Travison TG et al (2013) Risk factors associated with cardiovascular events during testosterone administration in older men with mobility limitation. J Gerontol A Biol Sci Med Sci 68:153–160. doi:10.1093/gerona/gls138

    Article  CAS  PubMed  Google Scholar 

  11. Maggio M, Snyder P, De Vita F et al (2014) Effects of transdermal testosterone treatment on inflammatory markers in elderly males. Endocr Pract 20:1170–1177. doi:10.4158/EP13357.OR

    Article  PubMed  PubMed Central  Google Scholar 

  12. Glintborg D, Christensen LL, Kvorning T et al (2013) Strength training and testosterone treatment have opposing effects on migration inhibitor factor levels in ageing men. Mediat Inflamm 2013:1–7. doi:10.1155/2013/539156

    Article  Google Scholar 

  13. Ehrchen JM, Sunderkotter C, Foell D et al (2009) The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86:557–566. doi:10.1189/jlb.1008647

    Article  CAS  PubMed  Google Scholar 

  14. Sekimoto R, Kishida K, Nakatsuji H et al (2012) High circulating levels of S100A8/A9 complex (calprotectin) in male Japanese with abdominal adiposity and dysregulated expression of S100A8 and S100A9 in adipose tissues of obese mice. Biochem Biophys Res Commun 419:782–789. doi:10.1016/j.bbrc.2012.02.102

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen L, Nybo M, Poulsen M et al (2014) Plasma calprotectin and its association with cardiovascular disease manifestations, obesity and the metabolic syndrome in type 2 diabetes mellitus patients. BMC Cardiovasc Disord 14:196. doi:10.1186/1471-2261-14-196

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morrow DA, Wang Y, Croce K et al (2008) Myeloid-related protein 8/14 and the risk of cardiovascular death or myocardial infarction after an acute coronary syndrome in the Pravastatin or Atorvastatin Evaluation and Infection Therapy: Thrombolysis in Myocardial Infarction (PROVE IT-TIMI 22) trial. Am Heart J 155:49–55. doi:10.1016/j.ahj.2007.08.018

    Article  CAS  PubMed  Google Scholar 

  17. Riancho JA (2008) Role of the Klotho gene in bone and mineral metabolism. Clin Rev Bone Miner Metab 6:31–36. doi:10.1007/s12018-008-9016-4

    Article  CAS  Google Scholar 

  18. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. doi:10.1038/36285

    Article  CAS  PubMed  Google Scholar 

  19. Olauson H, Vervloet MG, Cozzolino M et al (2014) New insights into the FGF23-Klotho axis. Semin Nephrol 34:586–597. doi:10.1016/j.semnephrol.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Sun Z (2015) Molecular basis of Klotho: from gene to function in aging. Endocr Rev 36:174–193. doi:10.1210/er.2013-1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugiura H, Tsuchiya K, Nitta K (2011) Circulating levels of soluble α-Klotho in patients with chronic kidney disease. Clin Exp Nephrol 15:795–796. doi:10.1007/s10157-011-0511-4

    Article  PubMed  Google Scholar 

  22. Liu H, Fergusson MM, Castilho RM et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317:803–806. doi:10.1126/science.1143578

    Article  CAS  PubMed  Google Scholar 

  23. Smith RC, O’Bryan LM, Farrow EG et al (2012) Circulating αKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest 122:4710–4715. doi:10.1172/JCI64986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pedersen L, Pedersen SM, Brasen CL, Rasmussen LM (2013) Soluble serum Klotho levels in healthy subjects. Comparison of two different immunoassays. Clin Biochem 46:1079–1083. doi:10.1016/j.clinbiochem.2013.05.046

    Article  CAS  PubMed  Google Scholar 

  25. Yamazaki Y, Imura A, Urakawa I et al (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398:513–518. doi:10.1016/j.bbrc.2010.06.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Isakova T, Xie H, Yang W et al (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–2439. doi:10.1001/jama.2011.826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ix JH, Katz R, Kestenbaum BR et al (2012) Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol 60:200–207. doi:10.1016/j.jacc.2012.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Semba RD, Cappola AR, Sun K et al (2011) Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci 66:794–800. doi:10.1093/gerona/glr058

    Article  PubMed  Google Scholar 

  29. Frederiksen L, Hojlund K, Hougaard DM et al (2012) Testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur J Endocrinol 166:469–476. doi:10.1530/EJE-11-0565

    Article  CAS  PubMed  Google Scholar 

  30. Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666–3672. doi:10.1210/jcem.84.10.6079

    Article  CAS  PubMed  Google Scholar 

  31. Vickers AJ, Altman DG (2001) Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ 323:1123–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frost M, Wraae K, Nielsen TL et al (2013) Similar reference intervals for total testosterone in healthy young and elderly men: results from the Odense Androgen Study. Clin Endocrinol (Oxf) 78:743–751. doi:10.1111/cen.12042

    Article  CAS  Google Scholar 

  33. Bhasin S, Cunningham GR, Hayes FJ et al (2010) Testosterone therapy in men with androgen deficiency syndromes: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 95:2536–2559. doi:10.1210/jc.2009-2354

    Article  CAS  PubMed  Google Scholar 

  34. Corona G, Giagulli VA, Maseroli E et al (2016) THERAPY OF ENDOCRINE DISEASE: testosterone supplementation and body composition: results from a meta-analysis study. Eur J Endocrinol 174:R99–R116. doi:10.1530/EJE-15-0262

    Article  CAS  PubMed  Google Scholar 

  35. Corona G, Giagulli VA, Maseroli E et al (2016) Testosterone supplementation and body composition: results from a meta-analysis of observational studies. J Endocrinol Invest 39:967–981. doi:10.1007/s40618-016-0480-2

    Article  CAS  PubMed  Google Scholar 

  36. Lue H, Kleemann R, Calandra T et al (2002) Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect Inst Pasteur 4:449–460

    Article  CAS  Google Scholar 

  37. Leng L, Metz CN, Fang Y et al (2003) MIF signal transduction initiated by binding to CD74. J Exp Med 197:1467–1476. doi:10.1084/jem.20030286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668

    Article  CAS  PubMed  Google Scholar 

  39. Hibino T, Sakaguchi M, Miyamoto S et al (2013) S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res 73:172–183. doi:10.1158/0008-5472.CAN-11-3843

    Article  CAS  PubMed  Google Scholar 

  40. Catalán V, Gómez-Ambrosi J, Rodríguez A et al (2011) Increased levels of calprotectin in obesity are related to macrophage content: impact on inflammation and effect of weight loss. Mol Med Camb Mass 17:1157–1167. doi:10.2119/molmed.2011.00144

    PubMed  PubMed Central  Google Scholar 

  41. McCrohon JA, Death AK, Nakhla S et al (2000) Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis. Circulation 101:224–226

    Article  CAS  PubMed  Google Scholar 

  42. Fejes I, Koloszár S, Závaczki Z et al (2006) Effect of body weight on testosterone/estradiol ratio in oligozoospermic patients. Arch Androl 52:97–102. doi:10.1080/01485010500315479

    Article  CAS  PubMed  Google Scholar 

  43. Meng J, Ohlsson C, Laughlin GA et al (2010) Associations of estradiol and testosterone with serum phosphorus in older men: the Osteoporotic Fractures in Men study. Kidney Int 78:415–422. doi:10.1038/ki.2010.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foley RN (2009) Phosphate levels and cardiovascular disease in the general population. Clin J Am Soc Nephrol CJASN 4:1136–1139. doi:10.2215/CJN.01660309

    Article  CAS  PubMed  Google Scholar 

  45. Sih R, Morley JE, Kaiser FE et al (1997) Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab 82:1661–1667. doi:10.1210/jcem.82.6.3988

    Article  CAS  PubMed  Google Scholar 

  46. Burnett-Bowie S-AM, Mendoza N, Leder BZ (2007) Effects of gonadal steroid withdrawal on serum phosphate and FGF-23 levels in men. Bone 40:913–918. doi:10.1016/j.bone.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  47. Stĕpán JJ, Lachman M, Zvĕrina J et al (1989) Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab 69:523–527. doi:10.1210/jcem-69-3-523

    Article  PubMed  Google Scholar 

  48. Ohlsson C, Barrett-Connor E, Bhasin S et al (2011) High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. The MrOS (Osteoporotic Fractures in Men) study in Sweden. J Am Coll Cardiol 58:1674–1681. doi:10.1016/j.jacc.2011.07.019

    Article  CAS  PubMed  Google Scholar 

  49. Shores MM, Biggs ML, Arnold AM et al (2014) Testosterone, dihydrotestosterone, and incident cardiovascular disease and mortality in the cardiovascular health study. J Clin Endocrinol Metab 99:2061–2068. doi:10.1210/jc.2013-3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jeppesen LL, Jorgensen HS, Nakayama H et al (1996) Decreased serum testosterone in men with acute ischemic stroke. Arterioscler Thromb Vasc Biol 16:749–754. doi:10.1161/01.ATV.16.6.749

    Article  CAS  PubMed  Google Scholar 

  51. Zhu D, Hadoke PWF, Wu J et al (2016) Ablation of the androgen receptor from vascular smooth muscle cells demonstrates a role for testosterone in vascular calcification. Sci Rep 6:24807. doi:10.1038/srep24807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Muraoka K (2001) Effects of testosterone replacement on renal function and apoptosis on mesangial and renal tubule cells in rats. Yonago Acta Med 44(1):37–44

    CAS  Google Scholar 

  53. Schmid C, Neidert MC, Tschopp O et al (2013) Growth hormone and Klotho. J Endocrinol 219:R37–R57. doi:10.1530/JOE-13-0285

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pedersen.

Ethics declarations

Conflict of interest

Authors state that there was no conflict of interest.

Ethical approval

The research study was approved by the Ethics local committee at Odense University Hospital, Odense, Denmark (Project ID S-20070051) and declared in Clinical Trials (identifier: NCT00700024).

Informed consent

Blood samples were obtained after receiving an informed written consent from the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, L., Christensen, L.L., Pedersen, S.M. et al. Reduction of calprotectin and phosphate during testosterone therapy in aging men: a randomized controlled trial. J Endocrinol Invest 40, 529–538 (2017). https://doi.org/10.1007/s40618-016-0597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-016-0597-3

Keywords

Navigation