Journal of Endocrinological Investigation

, Volume 37, Issue 9, pp 835–842 | Cite as

The effect of leptin promoter and leptin receptor gene polymorphisms on lipid profile among the diabetic population: modulations by atorvastatin treatment and environmental factors

  • Sayer I. Al-azzam
  • Omar F. Khabour
  • Karem H. Alzoubi
  • Raya N. Alzayadeen
Original Article

Abstract

Purpose

This study investigated the effect of leptin (LEP) 2548A/G and leptin receptor (LEPR) Q223R polymorphisms on the levels of HDL, LDL, TG, and total cholesterol (t-chol). In addition, the interactions between examined polymorphisms, statin therapy and environmental factors on lipid profile were examined.

Methods

Adult diabetic patients (n-418) were recruited from diabetes/endocrine clinics in north of Jordan. Lipid profile was measured using standard protocols. Genotyping of LEP 2548A/G and LEPR Q223R polymorphisms was carried out using polymerase chain reaction-restriction fragment length polymorphisms.

Results

No significant association between LEP 2548A/G and LEPR genotypes and levels of HDL (P = 0.83), LDL (P = 0.40), TG (P = 0.23) and t-chol (P = 0.91). However, in patient on atorvastatin, those with GG or GA genotypes of LEP 2548 experienced significantly higher levels of LDL compared with AA genotype of LEP 2548 (P < 0.002). Patients with dyslipidemia had higher TG in comparison with those without (P < 0.03). Smokers had lower HDL and higher TG levels compared with none smokers or previous smokers (P < 0.002 and P < 0.02, respectively). Female patients tend to have a higher HDL in comparison with male patients (P < 0.05). Patients with HbA1c value greater than or equal to 7 had higher LDL and t-chol compared with patients who had an HbA1c levels of <7 (P < 0.02 and < 0.005, respectively). Patients with disease duration of 5 or more years had a lower HDL compared with those patients with duration of <5 years (P < 0.03).

Conclusion

In conclusion, and although lipid profile regulation is a multifactorial process, -2548G/A LEP polymorphism seems to affect statins treatment response among diabetic patients. More studies are required to specifically define factors that influence lipid profiles interaction with statin treatment response especially among patients with diabetes.

Keywords

Leptin Leptin receptor Polymorphism Lipid profile Type II diabetes 

References

  1. 1.
    Kaul K, Tarr JM, Ahmad SI, Kohner EM, Chibber R (2012) Introduction to diabetes mellitus. Adv Exp Med Biol 771:1–11PubMedGoogle Scholar
  2. 2.
    Imam K (2012) Clinical features, diagnostic criteria and pathogenesis of diabetes mellitus. Adv Exp Med Biol 771:340–355PubMedGoogle Scholar
  3. 3.
    Imam K (2012) Management and treatment of diabetes mellitus. Adv Exp Med Biol 771:356–380PubMedGoogle Scholar
  4. 4.
    No author listed (1984) The lipid research clinics coronary primary prevention trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251(3):365–374CrossRefGoogle Scholar
  5. 5.
    O’Brien T, Nguyen TT, Zimmerman BR (1998) Hyperlipidemia and diabetes mellitus. Mayo Clin Proc 73(10):969–976. doi:10.4065/73.10.969 PubMedCrossRefGoogle Scholar
  6. 6.
    Merrin PK, Elkeles RS (1991) Treatment of diabetes: the effect on serum lipids and lipoproteins. Postgrad Med J 67(792):931–937PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Schmitz G, Schmitz-Madry A, Ugocsai P (2007) Pharmacogenetics and pharmacogenomics of cholesterol-lowering therapy. Curr Opin Lipidol 18(2):164–173. doi:10.1097/MOL.0b013e328055508300041433-200704000-00008 PubMedCrossRefGoogle Scholar
  8. 8.
    Perez-Jimenez F (2008) Polymorphisms of apoprotein E and response to statins. Med Clin (Barc) 130(11):413–414 (pii: 13117856)CrossRefGoogle Scholar
  9. 9.
    Stancakova A, Baldaufova L, Javorsky M, Kozarova M, Salagovic J, Tkac I (2006) Effect of gene polymorphisms on lipoprotein levels in patients with dyslipidemia of metabolic syndrome. Physiol Res 55(5):483–490 (pii: 836)PubMedGoogle Scholar
  10. 10.
    Xu Y, Bao Q, He B, Pan Y, Zhang R, Mao X, Tang Z, Qu L, Zhu C, Tian F, Wang S (2012) Association of angiotensin I converting enzyme, angiotensin II type 1 receptor and angiotensin I converting enzyme 2 gene polymorphisms with the dyslipidemia in type 2 diabetic patients of Chinese Han origin. J Endocrinol Invest 35(4):378–383. doi:10.3275/7797 PubMedGoogle Scholar
  11. 11.
    Akther A, Khan KH, Begum M, Parveen S, Kaiser MS, Chowdhury AZ (2009) Leptin: a mysterious hormone; its physiology and pathophysiology. Mymensingh Med J 18(1 Suppl):S140–S144PubMedGoogle Scholar
  12. 12.
    Fietta P (2005) Focus on leptin, a pleiotropic hormone. Minerva Med 96(2):65–75PubMedGoogle Scholar
  13. 13.
    Boumaiza I, Omezzine A, Rejeb J, Rebhi L, Ouedrani A, Ben Rejeb N, Nabli N, Ben Abdelaziz A, Bouslama A (2012) Relationship between leptin G2548A and leptin receptor Q223R gene polymorphisms and obesity and metabolic syndrome risk in Tunisian volunteers. Genet Test Mol Biomarkers 16(7):726–733. doi:10.1089/gtmb.2011.0324 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Murugesan D, Arunachalam T, Ramamurthy V, Subramanian S (2010) Association of polymorphisms in leptin receptor gene with obesity and type 2 diabetes in the local population of Coimbatore. Indian J Hum Genet 16(2):72–77. doi:10.4103/0971-6866.69350 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mizuta E, Kokubo Y, Yamanaka I, Miyamoto Y, Okayama A, Yoshimasa Y, Tomoike H, Morisaki H, Morisaki T (2008) Leptin gene and leptin receptor gene polymorphisms are associated with sweet preference and obesity. Hypertens Res 31(6):1069–1077. doi:10.1291/hypres.31.1069 PubMedCrossRefGoogle Scholar
  16. 16.
    Rahmouni K (2007) Differential control of the sympathetic nervous system by leptin: implications for obesity. Clin Exp Pharmacol Physiol Suppl 34 Suppl(s1):S8–S10. doi:10.1111/j.1440-1681.2007.04760.x PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith S, Stec DE (2010) Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem 285(23):17271–17276. doi:10.1074/jbc.R110.113175 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OP, Koniaris A (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301(4):E567–E584. doi:10.1152/ajpendo.00315.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Fruhbeck G, Jebb SA, Prentice AM (1998) Leptin: physiology and pathophysiology. Clin Physiol 18(5):399–419PubMedCrossRefGoogle Scholar
  20. 20.
    Moreno-Aliaga MJ, Stanhope KL, Havel PJ (2001) Transcriptional regulation of the leptin promoter by insulin-stimulated glucose metabolism in 3t3-l1 adipocytes. Biochem Biophys Res Commun 283(3):544–548. doi:10.1006/bbrc.2001.4822S0006291X01948223 PubMedCrossRefGoogle Scholar
  21. 21.
    Cusin I, Zakrzewska KE, Boss O, Muzzin P, Giacobino JP, Ricquier D, Jeanrenaud B, Rohner-Jeanrenaud F (1998) Chronic central leptin infusion enhances insulin-stimulated glucose metabolism and favors the expression of uncoupling proteins. Diabetes 47(7):1014–1019PubMedCrossRefGoogle Scholar
  22. 22.
    O’Rahilly S (2001) Leptin: pathophysiology and implications for therapy. Eat Weight Disord 6(3 Suppl):21PubMedGoogle Scholar
  23. 23.
    Nieters A, Becker N, Linseisen J (2002) Polymorphisms in candidate obesity genes and their interaction with dietary intake of n-6 polyunsaturated fatty acids affect obesity risk in a sub-sample of the EPIC-Heidelberg cohort. Eur J Nutr 41(5):210–221. doi:10.1007/s00394-002-0378-y PubMedCrossRefGoogle Scholar
  24. 24.
    Chagnon YC, Wilmore JH, Borecki IB, Gagnon J, Perusse L, Chagnon M, Collier GR, Leon AS, Skinner JS, Rao DC, Bouchard C (2000) Associations between the leptin receptor gene and adiposity in middle-aged Caucasian males from the HERITAGE family study. J Clin Endocrinol Metab 85(1):29–34PubMedGoogle Scholar
  25. 25.
    Betteridge DJ (2011) Lipid control in patients with diabetes mellitus. Nat Rev Cardiol 8(5):278–290. doi:10.1038/nrcardio.2011.23 PubMedCrossRefGoogle Scholar
  26. 26.
    Handelsman Y, Fonseca V, Rosenstock J (2012) Is combination therapy an effective way of reaching lipid goals in type 2 diabetes mellitus? Expert Rev Clin Pharmacol 5(1):43–54. doi:10.1586/ecp.11.73 PubMedCrossRefGoogle Scholar
  27. 27.
    Krssak M, Roden M (2004) The role of lipid accumulation in liver and muscle for insulin resistance and type 2 diabetes mellitus in humans. Rev Endocr Metab Disord 5(2):127–134. doi:10.1023/B:REMD.0000021434.98627.dc5267706 PubMedCrossRefGoogle Scholar
  28. 28.
    Borggreve SE, De Vries R, Dullaart RP (2003) Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin: cholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest 33(12):1051–1069 (pii: 1263)PubMedCrossRefGoogle Scholar
  29. 29.
    Woodman RJ, Chew GT, Watts GF (2005) Mechanisms, significance and treatment of vascular dysfunction in type 2 diabetes mellitus: focus on lipid-regulating therapy. Drugs 65(1):31–74 (pii: 6513)PubMedCrossRefGoogle Scholar
  30. 30.
    Pascot A, Lemieux I, Bergeron J, Tremblay A, Nadeau A, Prud’homme D, Couillard C, Lamarche B, Despres JP (2002) HDL particle size: a marker of the gender difference in the metabolic risk profile. Atherosclerosis 160(2):399–406 (pii: S0021915001005792)PubMedCrossRefGoogle Scholar
  31. 31.
    Ahmad Khan H (2007) Clinical significance of HbA1c as a marker of circulating lipids in male and female type 2 diabetic patients. Acta Diabetol 44(4):193–200. doi:10.1007/s00592-007-0003-x PubMedCrossRefGoogle Scholar
  32. 32.
    Gilani SY, Bibi S, Ahmed N, Shah SR (2010) Gender differences of dyslipidemia in type 2 diabetics. J Ayub Med Coll Abbottabad 22(3):146–148PubMedGoogle Scholar
  33. 33.
    Hu D, Hannah J, Gray RS, Jablonski KA, Henderson JA, Robbins DC, Lee ET, Welty TK, Howard BV (2000) Effects of obesity and body fat distribution on lipids and lipoproteins in nondiabetic American Indians: the strong heart study. Obes Res 8(6):411–421. doi:10.1038/oby.2000.51 PubMedCrossRefGoogle Scholar
  34. 34.
    Lee WL, Cheung AM, Cape D, Zinman B (2000) Impact of diabetes on coronary artery disease in women and men: a meta-analysis of prospective studies. Diabetes Care 23(7):962–968PubMedCrossRefGoogle Scholar
  35. 35.
    Maple-Brown LJ, Ye C, Retnakaran R (2013) Area-under-the-HbA1c-curve above the normal range and the prediction of microvascular outcomes: an analysis of data from the Diabetes Control and Complications Trial. Diabet Med 30(1):95–99. doi:10.1111/dme.12004 PubMedCrossRefGoogle Scholar
  36. 36.
    Padros G, Ferrer A, Formiga F, Almeda J, March MA, Pujol R (2012) Dyslipidemia and ischemic cardiopathy associated with duration of diabetes mellitus in the oldest old: the OCTABAIX study. J Am Geriatr Soc 60(8):1594–1596. doi:10.1111/j.1532-5415.2012.04087.x PubMedCrossRefGoogle Scholar
  37. 37.
    Nassar PO, Walker CS, Salvador CS, Felipetti FA, Orrico SR, Nassar CA (2012) Lipid profile of people with diabetes mellitus type 2 and periodontal disease. Diabetes Res Clin Pract 96(1):35–39. doi:10.1016/j.diabres.2011.11.017 PubMedCrossRefGoogle Scholar
  38. 38.
    Ginsberg HN, MacCallum PR (2009) The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. J Cardiometab Syndr 4(2):113–119. doi:10.1111/j.1559-4572.2008.00044.x PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hinuy HM, Hirata MH, Sampaio MF, Armaganijan D, Arazi SS, Salazar LA, Hirata RD (2010) Relationship between variants of the leptin gene and obesity and metabolic biomarkers in Brazilian individuals. Arq Bras Endocrinol Metabol 54(3):282–288 (pii: S0004-27302010000300006)PubMedCrossRefGoogle Scholar
  40. 40.
    Meier U, Gressner AM (2004) Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 50(9):1511–1525. doi:10.1373/clinchem.2004.032482clinchem.2004.032482 PubMedCrossRefGoogle Scholar
  41. 41.
    Lee J, Taneja V, Vassallo R (2012) Cigarette smoking and inflammation: cellular and molecular mechanisms. J Dent Res 91(2):142–149. doi:10.1177/0022034511421200 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    World Health Organization (2009) The tobacco epidemic. A global public health emergency. Tobacco or Health Programme on Substance Abuse, Tob. Alert Spec.WHO, Geneva, Switzerland, p 28Google Scholar
  43. 43.
    Venkatesan A, Hemalatha A, Bobby Z, Selvaraj N, Sathiyapriya V (2006) Effect of smoking on lipid profile and lipid peroxidation in normal subjects. Indian J Physiol Pharmacol 50(3):273–278PubMedGoogle Scholar
  44. 44.
    Kharb S, Singh GP (2000) Effect of smoking on lipid profile, lipid peroxidation and antioxidant status in normal subjects and in patients during and after acute myocardial infarction. Clin Chim Acta 302(1–2):213–219 (pii: S0009898100003430)PubMedCrossRefGoogle Scholar
  45. 45.
    Neki NS (2002) Lipid profile in chronic smokers—a clinical study. JIACM 3(1):51–54Google Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2014

Authors and Affiliations

  • Sayer I. Al-azzam
    • 1
  • Omar F. Khabour
    • 2
  • Karem H. Alzoubi
    • 1
  • Raya N. Alzayadeen
    • 1
  1. 1.Department of Clinical Pharmacy, Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Medical Laboratory SciencesJordan University of Science and TechnologyIrbidJordan

Personalised recommendations