Treatment Burst Data Points and Single Case Design Studies: A Bayesian N-of-1 Analysis for Estimating Treatment Effect Size

Abstract

Single-case experimental designs (SCED) evaluate treatment effects for each participant, but it is difficult to aggregate and quantify treatment effects across SCED participants receiving the same type of treatment. We applied Bayesian analytic procedures to SCED data aggregated across participants that have previously only been applied to large-N and group design studies of treatment effect sizes. For the current study, we defined transient elevated treatment data points as (1) above the range of the last five baseline sessions during the first three sessions of treatment (i.e., extinction burst); (2) within or above the range of baseline after the first three treatment sessions (i.e., recurrence burst); or (3) thinning phase data points above the last three prethinning treatment data points (i.e., thinning burst). Results indicated that the treatment effect sizes remained large regardless of controlling for transient elevated treatment data points. Finally, we examined the effects of reinforcer schedule thinning on estimates of treatment effect size. Results indicated a moderate negative impact of schedule thinning on treatment effect size with a 16% decrease in effect size. Recommendations for research and practice are provided, and the utility of using Bayesian analysis in single-case experimental designs is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barnard-Brak, L., Richman, D. M., Little, T. D., & Yang, Z. (2018). Development of an in-vivo metric to aid visual inspection of single-case design data: Do we need to run more sessions? Behaviour Research & Therapy, 102, 8–15.

    Article  Google Scholar 

  2. Bartlett, S. M., Rapp, J. T., Krueger, T. K., & Henrickson, M. L. (2011). The use of response cost to treat spitting by a child with autism. Behavioral Interventions, 26(1), 76–83.

    Article  Google Scholar 

  3. Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011). Introduction to meta-analysis. New York, NY: Wiley.

  4. Britton, L. N., Carr, J. E., Kellum, K. K., Dozier, C. L., & Weil, T. M. (2000). A variation of noncontingent reinforcement in the treatment of aberrant behavior. Research in Developmental Disabilities, 21(6), 425–435.

    PubMed  Article  Google Scholar 

  5. Carlin, B. P., & Louis, T. A. (2010). Bayes and empirical Bayes methods for data analysis. Chicago, IL: Chapman & Hall/CRC.

  6. Carr, J. E., Dozier, C. L., Patel, M. R., Adams, A. N., & Martin, N. (2002). Treatment of automatically reinforced object mouthing with noncontingent reinforcement and response blocking: Experimental analysis and social validation. Research in Developmental Disabilities, 23(1), 37–44.

    PubMed  Article  Google Scholar 

  7. Cataldo, M. F., Ward, E. M., Russo, D. C., Riordan, M., & Bennett, D. (1986). Compliance and correlated problem behavior in children: Effects of contingent and noncontingent reinforcement. Analysis & Intervention in Developmental Disabilities, 6(4), 265–282. https://doi.org/10.1016/S0270-4684(86)80009-X.

    Article  Google Scholar 

  8. Cohen, J. (1988). The effect size index: d. Statistical Power Analysis for the Behavioral Sciences, 2, 284–288.

    Google Scholar 

  9. Cooper, H., & Valentine, J. C. (2008). Research synthesis and meta-analysis. In Handbook of research on adult learning and development (pp. 184–202). New York, NY: Routledge.

    Google Scholar 

  10. Davis, D. H., Fredrick, L. D., Alberto, P. A., & Gama, R. (2012). Functional communication training without extinction using concurrent schedules of differing magnitudes of reinforcement in classrooms. Journal of Positive Behavior Interventions, 14(3), 162–172.

    Article  Google Scholar 

  11. DeLeon, I. G., Anders, B. M., Rodriguez-Catter, V., & Neidert, P. L. (2000). The effects of noncontingent access to single-versus multiple-stimulus sets on self-injurious behavior. Journal of Applied Behavior Analysis, 33(4), 623–626.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Depaoli, S., & Van de Schoot, R. (2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychological Methods, 22(2), 240.

    PubMed  Article  Google Scholar 

  13. Duan, N., Kravitz, R., & Schmid, C. (2013). Single-patient (n-of-1) trials: a pragmatic clinical decision methodology. Journal of Clinical Epidemiology, 66(8), S21–S28.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Efron, B. (2012). Large-scale inference: Empirical Bayes methods for estimation, testing, and prediction (Vol. 1). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  15. Fisher, W. W., Thompson, R. H., DeLeon, I. G., Piazza, C. C., Kuhn, D. E., Rodriguez-Catter, V., & Adelinis, J. D. (1999). Noncontingent reinforcement: Effects of satiation versus choice responding. Research in Developmental Disabilities, 20(6), 411–427.

    PubMed  Article  Google Scholar 

  16. Gabler, N. B., Duan, N., Vohra, S., & Kravitz, R. L. (2011). N-of-1 trials in the medical literature: a systematic review. Medical Care, 49(8), 761–768.

    PubMed  Article  Google Scholar 

  17. Hagopian, L. P., Fisher, W. W., & Legacy, S. M. (1994). Schedule effects of noncontingent reinforcement on attention-maintained destructive behavior in identical quadruplets. Journal of Applied Behavior Analysis, 27(2), 317–325. https://doi.org/10.1901/jaba.1994.27-317.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hagopian, L. P., Crockett, J. L., Van Stone, M., Deleon, I. G., & Bowman, L. G. (2000). Effects of noncontingent reinforcement on problem behavior and stimulus engagement: The role of satiation, extinction, and alternative reinforcement. Journal of Applied Behavior Analysis, 33(4), 433–449.

    PubMed  PubMed Central  Article  Google Scholar 

  19. Harrington, M., & Velicer, W. F. (2015). Comparing visual and statistical analysis in single-case studies using published studies. Multivariate behavioral research, 50(2), 162–183.

  20. Hedges, L. V., Pustejovsky, J. E., & Shadish, W. R. (2012). A standardized mean difference effect size for single case designs. Research Synthesis Methods, 3(3), 224–239.

    PubMed  Article  Google Scholar 

  21. Homer, R., Carr, E., Halle, J., McGee, G. Odom. S., & Wolery, M. (2005). Use of single-subject research to identify evidence-based practice in special education. Exceptiomil Children, 71(2), 165–176.

  22. Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. Journal of Problem Solving, 7(1), 2.

    Article  Google Scholar 

  23. Johnston, J. M., & Pennypacker, H. S. (2010). Strategies and tactics of behavioral research. New York, NY: Routledge. https://doi.org/10.4324/9780203837900.

    Google Scholar 

  24. Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied settings. New York, NY: Oxford University Press.

    Google Scholar 

  25. Keeney, K. M., Fisher, W. W., Adelinis, J. D., & Wilder, D. A. (2000). The effects of response cost in the treatment of aberrant behavior maintained by negative reinforcement. Journal of Applied Behavior Analysis, 33(2), 255–258.

    PubMed  PubMed Central  Article  Google Scholar 

  26. Kratochwill, T. R. (2015). Selective mutism (psychology revivals): Implications for research and treatment. London: Psychology Press.

  27. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Lerman, D. C., & Iwata, B. A. (1995). Prevalence of the extinction burst and its attenuation during treatment. Journal of Applied Behavior Analysis, 28(1), 93–94.

    PubMed  PubMed Central  Article  Google Scholar 

  29. Lillie, E. O., Patay, B., Diamant, J., Issell, B., Topol, E., & Schork, N. (2011). The n-of-1 clinical trial. Personalized Medicine, 8(2), 161–173.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage.

  31. Long, E. S., Hagopian, L. P., DeLeon, I. G., Marhefka, J. M., & Resau, D. (2005). Competing stimuli in the treatment of multiply controlled problem behavior during hygiene routines. Research in Developmental Disabilities, 26(1), 57–69.

    PubMed  Article  Google Scholar 

  32. Maggin, D. M., Swaminathan, H., Rogers, H. J., O’Keeffe, B. V., Sugai, G., & Horner, R. H. (2011). A generalized least squares regression approach for computing effect sizes in single-case research: Application examples. Journal of School Psychology, 49(3), 301–321.

    PubMed  Article  Google Scholar 

  33. Marcus, B. A., & Vollmer, T. R. (1996). Combining noncontingent reinforcement and differential reinforcement schedules as treatment for aberrant behavior. Journal of Applied Behavior Analysis, 29(1), 43–51.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Meyn, S. P., & Tweedie, R. L. (1993). Markov chains and stochastic stability. London, UK: Springer.

    Google Scholar 

  35. Muthén, L., & Muthén, B. O. (2017). In L. Angeles (Ed.), Mplus user’s guide (8th ed.). CA: Author.

    Google Scholar 

  36. Parker, R. I., Hagan-Burke, S., & Vannest, K. (2007). Percentage of all non-overlapping data (PAND) an alternative to PND. Journal of Special Education, 40(4), 194–204.

    Article  Google Scholar 

  37. Parker, R. I., & Vannest, K. (2009). An improved effect size for single-case research: Nonoverlap of all pairs. Behavior Therapy, 40(4), 357–367.

  38. Persel, C. S., Persel, C. H., Ashley, M. J., & Krych, D. K. (1997). The use of noncontingent reinforcement and contingent restraint to reduce physical aggression and self injurious behaviour in a traumatically brain injured adult. Brain Injury, 11(10), 751–760.

    PubMed  Article  Google Scholar 

  39. Piazza, C. C., Fisher, W. W., Hanley, G. P., LeBlanc, L. A., Worsdell, A. S., Lindauer, S. E., & Keeney, K. M. (1998). Treatment of pica through multiple analyses of its reinforcing functions. Journal of Applied Behavior Analysis, 31(2), 165–189.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Podlesnik, C. A., & Shahan, T. A. (2010). Extinction, relapse, and behavioral momentum. Behavioural Processes, 84(1), 400–411.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Powers, K. V., Roane, H. S., & Kelley, M. E. (2007). Treatment of self-restraint associated with the application of protective equipment. Journal of Applied Behavior Analysis, 40(3), 577–581.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Punja, S., Bukutu, C., Shamseer, L., Sampson, M., Hartling, L., Urichuk, L., & Vohra, S. (2016). N-of-1 trials are a tapestry of heterogeneity. Journal of Clinical Epidemiology, 76, 47–56.

    PubMed  Article  Google Scholar 

  43. Pustejovsky, J. E. (2018). Using response ratios for meta-analyzing single-case designs with behavioral outcomes. Journal of School Psychology, 68, 99–112.

  44. Rice, M. E., & Harris, G. T. (2005). Comparing effect sizes in follow-up studies: ROC Area, Cohen's d, and r. Law & Human Behavior, 29(5), 615–620.

    Article  Google Scholar 

  45. Richman, D. M., Barnard-Brak, L., Grubb, L., Bosch, A., & Abby, L. (2015). Meta-analysis of noncontingent reinforcement effects on problem behavior. Journal of Applied Behavior Analysis, 48(1), 131–152.

    PubMed  Article  Google Scholar 

  46. Scruggs, T. E., & Mastropieri, M. A. (2013). PND at 25: Past, present, and future trends in summarizing single-subject research. Remedial & Special Education, 34(1), 9–19.

    Article  Google Scholar 

  47. Shadish, W. R., Hedges, L. V., & Pustejovsky, J. E. (2014). Analysis and meta-analysis of single-case designs with a standardized mean difference statistic: A primer and applications. Journal of School Psychology, 52(2), 123–147.

    PubMed  Article  Google Scholar 

  48. Sigafoos, J., & Pennell, D. (1995). Noncontingent application versus contingent removal of tactile stimulation: Effects on self-injury in a young boy with multiple disabilities. Behaviour Change, 12(3), 139–143.

    Article  Google Scholar 

  49. Swaminathan, H., Rogers, H. J., & Horner, R. H. (2014). An effect size measure and Bayesian analysis of single-case designs. Journal of School Psychology, 52(2), 213–230.

    PubMed  Article  Google Scholar 

  50. Van Zyl, C. J. (2018). Frequentist and Bayesian inference: A conceptual primer. New Ideas in Psychology, 51, 44–49.

    Article  Google Scholar 

  51. Vollmer, T. R., Iwata, B. A., Zarcone, J. R., Smith, R. G., & Mazaleski, J. L. (1993). The role of attention in the treatment of attention-maintained self-injurious behavior: Noncontingent reinforcement and differential reinforcement of other behavior. Journal of Applied Behavior Analysis, 26(1), 9–21.

    PubMed  PubMed Central  Article  Google Scholar 

  52. Wagenmakers, E. J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian versus Frequentist Inference. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), Bayesian evaluation of informative hypotheses (pp. 43–62). New York, NY: Springer.

  53. Zucker, D. R., Ruthazer, R., & Schmid, C. H. (2010). Individual (N-of-1) trials can be combined to give population comparative treatment effect estimates: Methodologic considerations. Journal of Clinical Epidemiology, 63(12), 1312–1323.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucy Barnard-Brak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barnard-Brak, L., Richman, D.M. & Watkins, L. Treatment Burst Data Points and Single Case Design Studies: A Bayesian N-of-1 Analysis for Estimating Treatment Effect Size. Perspect Behav Sci 43, 285–301 (2020). https://doi.org/10.1007/s40614-020-00258-8

Download citation

Keywords

  • Overlapping treatment data points
  • Single-case experimental designs
  • Single subject
  • Estimating effect size