Skip to main content

Advertisement

Log in

Modelomics to Investigate Cancer Bone Metastasis

  • Molecular Biology of Bone Metastasis (H Taipaleenmäki, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Modelomics approach allows modelling and understanding of the mechanisms regulating living complex systems using computational and experimental models. Here, our aim was to highlight recent cancer models with the focus on bioengineering tool box to study bone metastasis cascade.

Recent findings

Bone is a common site for cancer metastasis. In the last few decades, various in vitro and in vivo models have been used to provide insights into the treatment of human cancer bone metastasis. Despite significant advances into the understanding of molecular and cellular mechanisms of cancer bone metastasis using traditional models, recent studies reported the functional failure of the new drugs when tested in humans and demonstrated the inability of current bone metastasis models to mimic corresponding human disease. The failure of cancer treatments highlights the importance of reviewing the efficiency and efficacy of current modelomics to accurately investigate bone metastasis.

Summary

Development of innovative cancer bone metastasis models is an essential step to develop new therapies or investigate the feasibility of current treatments. The emergence of bone on chip, tissue engineering of humanized mouse models has the potential to overcome the limitation of current platforms by better recapitulation of the cancer bone metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1)

  2. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.

    PubMed  PubMed Central  Google Scholar 

  3. •• Perrin S. Preclinical research: make mouse studies work. Nature. 2014;507(7493):423–5. This perspective paper highlights the inability of current animal models as preclinical platforms to predict drug effects in humans.

    Article  PubMed  Google Scholar 

  4. •• Holzapfel BM, Wagner F, Thibaudeau L, Levesque J-P, Hutmacher DW. Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering. Stem Cells. 2015;33(6):1696–704. This review paper demonstrates the convergence of tissue engineering approach and cancer research.

    Article  PubMed  CAS  Google Scholar 

  5. • Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters’. Trends Mol Med. 2014;20(8):449–59. This paper demonstrates contribution of osteoblasts in the pathology of bone and also highlights the impact of osteoclasts with the haematopoietic system.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zheng Y, Zhou H, Dunstan CR, Sutherland RL, Seibel MJ. The role of the bone microenvironment in skeletal metastasis. J Bone Oncol. 2013;2(1):47–57.

    Article  PubMed  Google Scholar 

  7. Roodman GD, Silbermann R. Mechanisms of osteolytic and osteoblastic skeletal lesions. BoneKEy reports. 2015;4.

  8. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121(4):1298–312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Taichman RS, Patel LR, Bedenis R, Wang J, Weidner S, Schumann T, et al. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS One. 2013;8(4):e61873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 2010;12(2):116IN4–27.

    Article  CAS  Google Scholar 

  11. Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang T-C, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 2014;512(7515):431–5.

    Article  PubMed  CAS  Google Scholar 

  12. Mohammad KS, Javelaud D, Fournier PG, Niewolna M, McKenna CR, Peng XH, et al. TGF-β-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res. 2011;71(1):175–84.

    Article  PubMed  CAS  Google Scholar 

  13. Pivetta E, Scapolan M, Pecolo M, Wassermann B, Abu-Rumeileh I, Balestreri L, et al. MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases. Breast Cancer Res. 2011;13(5):R105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi R-U, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7(332):ra63.

    Article  PubMed  CAS  Google Scholar 

  15. •• Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013;4:1795. This study delineates the molecular basis for mesenchymal stem cell contribution in tumours growth and demosntates how this process leads to tumour metastasis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang XH-F, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 2013;154(5):1060–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. •• Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63. This study shows that the tumour microenvironment facilitates metastatic spread by inducing reversible changes in the cancer cell phenotype.

    Article  PubMed  CAS  Google Scholar 

  18. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 2013;4(11):2108.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brown MD, Hart C, Gazi E, Gardner P, Lockyer N, Clarke N. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. Br J Cancer. 2010;102(2):403–13.

    Article  PubMed  CAS  Google Scholar 

  20. • Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17. This paper reveals that microvasculature forms the dormant niche and shows endothelial cells are key contributors in regulating the transition of cancer cells from dormancy to metastatic growth.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361.

    Article  PubMed  Google Scholar 

  22. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012;10(7):e1001363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dumont N, Liu B, DeFilippis RA, Chang H, Rabban JT, Karnezis AN, et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia. 2013;15(3):249IN1–62IN7.

    Article  CAS  Google Scholar 

  24. O'Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS, et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci. 2011;108(38):16002–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Joseph J, Shiozawa Y, Jung Y, Kim JK, Pedersen E, Mishra A, et al. Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype. Mol Cancer Res. 2012;10:282–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Herroon M, Rajagurubandara E, Rudy D, Chalasani A, Hardaway A, Podgorski I. Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene. 2013;32(12):1580–93.

    Article  PubMed  CAS  Google Scholar 

  27. Soki FN, Cho SW, Kim YW, Jones JD, Park SI, Koh AJ, et al. Bone marrow macrophages support prostate cancer growth in bone. Oncotarget. 2015;6(34):35782.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao E, Wang L, Dai J, Kryczek I, Wei S, Vatan L, et al. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology. 2012;1(2):152–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang K, Kim S, Cremasco V, Hirbe AC, Novack DV, Weilbaecher K, et al. CD8+ T cells regulate bone tumor burden independent of osteoclast resorption. Cancer Res. 2011;71(14):4799–808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jackson W, Sosnoski DM, Ohanessian SE, Chandler P, Mobley A, Meisel KD, et al. Role of megakaryocytes in breast Cancer metastasis to bone. Cancer Res. 2017;77(8):1942–54.

    Article  PubMed  CAS  Google Scholar 

  31. Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15(9):563–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett. 2015;361(2):155–63.

    Article  PubMed  CAS  Google Scholar 

  33. • Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. This paper reviews the origins of fibroblast and highlights their functions in cancers.

    Article  PubMed  CAS  Google Scholar 

  34. Lawler J. Megakaryocytes join the war on cancer. Blood. 2010;115(22):4326–7.

    Article  PubMed  CAS  Google Scholar 

  35. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu G, Lu S, Wang X, Page ST, Higano CS, Plymate SR, et al. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Invest. 2013;123(10):4410–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shiozawa Y, Eber MR, Berry JE, Taichman RS. Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors. BoneKEy reports 2015; 4.

  38. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  39. Soki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET, et al. Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J Biol Chem. 2014;289(35):24560–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pouliot N, Pearson HB, Burrows A. Investigating metastasis using in vitro platforms. 2013.

  41. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962;115(3):453–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen HC Boyden chamber assay. Cell Migr Dev Methods Protoc. 2005;15–22.

  43. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, et al. In vitro cell migration and invasion assays. Mutat Res Rev Mutat Res. 2013;752(1):10–24.

    Article  CAS  Google Scholar 

  44. •• Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. 2016;4:12. This paper reviews current in vitro models and their advantages, disadvantages and suitability in modelling the metastatic cascade.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Caballero D, Kaushik S, Correlo V, Oliveira JM, Reis R, Kundu S. Organ-on-chip models of cancer metastasis for future personalized medicine: from chip to the patient. Biomaterials. 2017;149:98–115.

    Article  PubMed  CAS  Google Scholar 

  46. Zhou SF, Gopalakrishnan S, Xu YH, To SK, Wong AS, Pang SW, et al. Substrates with patterned topography reveal metastasis of human cancer cells. Biomed Mater. 2017;12(5):055001.

    Article  PubMed  Google Scholar 

  47. Griner LAM, Zhang X, Guha R, McKnight C, Goldlust IS, Lal-Nag M, et al. Large-scale pharmacological profiling of 3D tumor models of cancer cells. Cell Death Dis. 2016;7(12):e2492.

    Article  CAS  Google Scholar 

  48. Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. • Chen MB, Whisler JA, Fröse J, Yu C, Shin Y, Kamm RD. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protocols. 2017;12(5):865–80. In this work, authors describe development of a microfluidic platform similar to human microcirculation able to recapitulate early metastatic seeding, including arrest, transendothelial migration and early micrometastasis formation.

    Article  PubMed  CAS  Google Scholar 

  50. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, et al. Microfabrication of human organs-on-chips. Nat Protoc. 2013;8(11):2135–57.

    Article  PubMed  CAS  Google Scholar 

  51. Denayer T, Stöhr T, Van Roy M. Animal models in translational medicine: validation and prediction. New Horiz Translat Med. 2014;2(1):5–11.

    Google Scholar 

  52. Cho S-Y, Kang W, Han JY, Min S, Kang J, Lee A, et al. An integrative approach to precision cancer medicine using patient-derived xenografts. Mol Cells. 2016;39(2):77–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Es HA, Montazeri L, Aref AR, Vosough M, Baharvand H. Personalized cancer medicine: an organoid approach. Trends Biotechnol 2018.

  54. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. •• Shih Y-R, Kang H, Rao V, Chiu Y-J, Kwon SK, Varghese S. In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism. Proc Natl Acad Sci. 2017;2017:02576. This study reports engineering of a bone tissue with mixed chimerism which could be used as a platform to study haematopoiesis, donor-host cell dynamics and tumour tropism.

    Google Scholar 

  56. Shafiee A, McGovern JA, Lahr CA, Meinert C, Moi D, Wagner D, et al. Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study. Int J Cancer. 2018. In Press

  57. Holzapfel BM, Wagner F, Loessner D, Holzapfel NP, Thibaudeau L, Crawford R, et al. Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone. Biomaterials. 2014;35(13):4108–15.

    Article  PubMed  CAS  Google Scholar 

  58. Holzapfel BM, Thibaudeau L, Hesami P, Taubenberger A, Holzapfel NP, Mayer-Wagner S, et al. Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Rev. 2013;32(1–2):129–45.

    Article  PubMed  CAS  Google Scholar 

  59. Villasante A, Marturano-Kruik A, Vunjak-Novakovic G. Bioengineered human tumor within a bone niche. Biomaterials. 2014;35(22):5785–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Landgraf M, McGovern JA, Friedl P, Hutmacher DW. Rational design of mouse models for cancer research. Trends Biotechnol. 2018;36:242–51.

    Article  PubMed  CAS  Google Scholar 

  61. Tannock IF, Hickman JA. Limits to personalized cancer medicine. N Engl J Med. 2016;375(13):1289–94.

    Article  PubMed  Google Scholar 

  62. Garralda E, Paz K, López-Casas PP, Jones S, Katz A, Kann LM, et al. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin Cancer Res. 2014;20(9):2476–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011;17(3):297–303.

    Article  PubMed  CAS  Google Scholar 

  64. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4(3):309–24.

    Article  PubMed  CAS  Google Scholar 

  65. Krueger S, Kalinski T, Wolf H, Kellner U, Roessner A. Interactions between human colon carcinoma cells, fibroblasts and monocytic cells in coculture—regulation of cathepsin B expression and invasiveness. Cancer Lett. 2005;223(2):313–22.

    Article  PubMed  CAS  Google Scholar 

  66. dit Faute MA, Laurent L, Ploton D, Poupon M-F, Jardillier J-C, Bobichon H. Distinctive alterations of invasiveness, drug resistance and cell–cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. Clin Exp Metastasis. 2002;19(2):161–7.

    Article  PubMed  Google Scholar 

  67. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164(2):192–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, et al. Engineering tumors with 3D scaffolds. Nat Methods. 2007;4(10):855–60.

    Article  PubMed  CAS  Google Scholar 

  69. DelNero P, Lane M, Verbridge SS, Kwee B, Kermani P, Hempstead B, et al. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials. 2015;55:110–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fong ELS, Lamhamedi-Cherradi S-E, Burdett E, Ramamoorthy V, Lazar AJ, Kasper FK, et al. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci. 2013;110(16):6500–5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gu L, Mooney DJ. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat Rev Cancer. 2016;16(1):56–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sieh S, Taubenberger AV, Lehman ML, Clements JA, Nelson CC, Hutmacher DW. Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis. Bone. 2014;63:121–31.

    Article  PubMed  CAS  Google Scholar 

  73. • Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC, et al. Substrate stress relaxation regulates cell spreading. Nat Commun. 2015;6:6365. This work investigates the influence of extracellular matrix stress relaxation on cell behaviour through computational modelling and cellular experiments.

    Article  CAS  Google Scholar 

  74. Kopanska KS, Alcheikh Y, Staneva R, Vignjevic D, Betz T. Tensile forces originating from cancer spheroids facilitate tumor invasion. PLoS One. 2016;11(6):e0156442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. • Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PDP, Pinter J, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. In this work, authors describe specific factors which respond to changes in extracellular matrix stiffness.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. •• Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater. 2012;11(7):642–9. In this work, authors investigate how substrate properties and specifically mechanical forces influence stem cell fate.

    Article  PubMed  CAS  Google Scholar 

  77. Carey SP, Martin KE, Reinhart-King CA. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci Rep. 2017;7:42088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rosenbluth MJ, Lam WA, Fletcher DA. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J. 2006;90(8):2994–3003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhang G, Long M, Wu Z-Z, Yu W-Q. Mechanical properties of hepatocellular carcinoma cells. World J Gastroenterol. 2002;8(2):243–6.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ding Y-X, Cheng Y, Sun Q-M, Zhang Y-Y, You K, Guo Y-L, et al. Mechanical characterization of cervical squamous carcinoma cells by atomic force microscopy at nanoscale. Med Oncol. 2015;32(3):71.

    Article  PubMed  CAS  Google Scholar 

  81. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. Matrix rigidity regulates a switch between TGF-β1–induced apoptosis and epithelial–mesenchymal transition. Mol Biol Cell. 2012;23(5):781–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Rianna C, Kumar P, Radmacher M. The role of the microenvironment in the biophysics of cancer. Semin Cell Dev Biol. 2017;73:107–14. Elsevier

    Article  PubMed  CAS  Google Scholar 

  84. Nguyen TV, Sleiman M, Moriarty T, Herrick WG, Peyton SR. Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials. 2014;35(22):5749–59.

    Article  PubMed  CAS  Google Scholar 

  85. McGrail DJ, Kieu QMN, Iandoli JA, Dawson MR. Actomyosin tension as a determinant of metastatic cancer mechanical tropism. Phys Biol. 2015;12(2):026001.

    Article  PubMed  CAS  Google Scholar 

  86. Ehsan SM, Welch-Reardon KM, Waterman ML, Hughes CC, George SC. A three-dimensional in vitro model of tumor cell intravasation. Integr Biol. 2014;6(6):603–10.

    Article  CAS  Google Scholar 

  87. Kaemmerer E, Melchels FP, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D. Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater. 2014;10(6):2551–62.

    Article  PubMed  CAS  Google Scholar 

  88. Arya AD, Hallur PM, Karkisaval AG, Gudipati A, Rajendiran S, Dhavale V, et al. Gelatin methacrylate hydrogels as biomimetic three-dimensional matrixes for modeling breast cancer invasion and chemoresponse in vitro. ACS Appl Mater Interfaces. 2016;8(34):22005–17.

    Article  PubMed  CAS  Google Scholar 

  89. Peela N, Truong D, Saini H, Chu H, Mashaghi S, Ham SL, et al. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials. 2017;133:176–207.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang W, Lee WY, Siegel DS, Tolias P, Zilberberg J. Patient-specific 3D microfluidic tissue model for multiple myeloma. Tissue Eng Part C Methods. 2014;20(8):663–70.

    Article  PubMed  CAS  Google Scholar 

  91. Marturano-Kruik A, Nava MM, Yeager K, Chramiec A, Hao L, Robinson S, et al. Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc Natl Acad Sci. 2018;2017:14282.

    Google Scholar 

  92. Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials. 2014;35(8):2454–61.

    Article  PubMed  CAS  Google Scholar 

  93. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci. 2015;112(1):214–9.

    Article  PubMed  CAS  Google Scholar 

  94. Parlato S, De Ninno A, Molfetta R, Toschi E, Salerno D, Mencattini A, et al. 3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep. 2017;7(1):1093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD. Microfluidics: a new tool for modeling cancer–immune interactions. Trends Cancer. 2016;2(1):6–19.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, et al. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight. 2017;2(12):89762.

    Article  PubMed  Google Scholar 

  97. Aguado BA, Caffe JR, Nanavati D, Rao SS, Bushnell GG, Azarin SM, et al. Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche. Acta Biomater. 2016;33:13–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Rao SS, Bushnell GG, Azarin SM, Spicer G, Aguado BA, Stoehr JR, et al. Enhanced survival with implantable scaffolds that capture metastatic breast cancer cells in vivo. Cancer Res. 2016;76(18):5209–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. •• Azarin SM, Yi J, Gower RM, Aguado BA, Sullivan ME, Goodman AG, et al. In vivo capture and label-free detection of early metastatic cells. Nat Commun. 2015;6:8094. In this work, authors report the early detection of cancer metastasis using an implanted scaffold able to recruit and capture metastatic cells in vivo.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee J, Li M, Milwid J, Dunham J, Vinegoni C, Gorbatov R, et al. Implantable microenvironments to attract hematopoietic stem/cancer cells. Proc Natl Acad Sci. 2012;109(48):19638–43.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Torisawa Y-S, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, et al. Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11(6):663.

    Article  PubMed  CAS  Google Scholar 

  102. •• Holzapfel BM, Hutmacher DW, Nowlan B, Barbier V, Thibaudeau L, Theodoropoulos C, et al. Tissue engineered humanized bone supports human hematopoiesis in vivo. Biomaterials. 2015;61:103–14. This study reports development and validation of a tissue engineered bone in mouse similar to human bone which able to support human haematopoiesis in vivo.

    Article  PubMed  CAS  Google Scholar 

  103. • Shafiee A, Baldwin JG, Patel J, Holzapfel BM, Fisk NM, Khosrotehrani K, et al. Fetal bone marrow-derived mesenchymal stem/stromal cells enhance humanization and bone formation of BMP7 loaded scaffolds. Biotechnol J. 2017;12(12). This study highlights the significant role of BMP7 in formation of physiological bone and also compares the osteogenic differentiation potential of mesenchymal cells isolated from human bone marrow and placental tissues.

  104. Thibaudeau L, Quent VM, Holzapfel BM, Taubenberger AV, Straub M, Hutmacher DW. Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies. Cancer Metastasis Rev. 2014;33(2–3):721–35.

    Article  PubMed  CAS  Google Scholar 

  105. Bersani F, Lee J, Yu M, Morris R, Desai R, Ramaswamy S, et al. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res. 2014;74(24):7229–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. • Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9(2):90–3. In this commentary, author proposes utilization of biomaterial and tissue engineering sciences to create tissues able to reproduce the tumour formation, growth and metastasis.

    Article  PubMed  CAS  Google Scholar 

  108. Zhu W, Holmes B, Glazer RI, Zhang LG. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine. 2016;12(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  109. Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today. 2015;18(10):539–53.

    Article  CAS  Google Scholar 

  110. Weigelt B, Peterse JL, Van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602.

    Article  PubMed  CAS  Google Scholar 

  111. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6(6):449–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose works could not be cited due to space constraints.

Funding

The current project is supported by the NHMRC Project Grant 1082313, by the National Breast Cancer Foundation (NBCF IN-15-047), and by a grant from Worldwide Cancer Research (WWCR 15-11563).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Shafiee or Dietmar W. Hutmacher.

Ethics declarations

Conflict of Interest

Abbas Shafiee and Dietmar W. Hutmacher declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biology of Bone Metastasis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiee, A., Hutmacher, D.W. Modelomics to Investigate Cancer Bone Metastasis. Curr Mol Bio Rep 4, 88–100 (2018). https://doi.org/10.1007/s40610-018-0094-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-018-0094-x

Keywords

Navigation