Skip to main content
Log in

Bone Marrow Niche: Role of Different Cells in Bone Metastasis

  • Molecular Biology of Bone Metastasis (H Taipaleenmäki, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This report summarizes current knowledge of bone marrow hematopoietic stem cell (HSC) niche, focusing on the identification of niche cells and molecular mechanisms involved in HSC maintenance and bone metastasis.

Recent Findings

Novel imaging techniques are greatly improving our understanding of bone marrow niche and latest studies have revealed several complex multicellular regulatory mechanisms of niche function. Especially, the intriguing role of bone marrow macrophages and osteomacs is an emerging topic in the field. It appears that, e.g., macrophage polarization is important for communication with bone marrow stromal cells (BMSCs). Bone marrow is also a favorable environment for disseminated tumor cells and recent data shows that various niche cell types, including endothelial cells and BMSCs, regulate the progression of bone metastasis.

Summary

Bone marrow niche represents a multicellular system with complex interactions. Emerging data is providing us with a deeper understanding of this fascinating tissue and its role in metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.

    PubMed  CAS  Google Scholar 

  2. Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977;91(3):335–44.

    Article  PubMed  CAS  Google Scholar 

  3. Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179(5):1677–82.

    Article  PubMed  CAS  Google Scholar 

  4. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93. https://doi.org/10.1038/nrc2621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121(4):1298–312. https://doi.org/10.1172/JCI43414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wang N, Docherty FE, Brown HK, Reeves KJ, Fowles AC, Ottewell PD, et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res. 2014;29(12):2688–96. https://doi.org/10.1002/jbmr.2300.

    Article  PubMed  CAS  Google Scholar 

  7. Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73. https://doi.org/10.1126/scitranslmed.aad4059.

    Article  PubMed  Google Scholar 

  8. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17. https://doi.org/10.1038/ncb2767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62. Erratum in: Science 1989:244(4908):1030

    Article  PubMed  CAS  Google Scholar 

  10. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149–61. https://doi.org/10.1016/j.cell.2004.07.004.

    Article  PubMed  CAS  Google Scholar 

  11. Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C, et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell. 2012;150(2):351–65. https://doi.org/10.1016/j.cell.2012.05.041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21. https://doi.org/10.1016/j.cell.2005.05.026.

    Article  PubMed  CAS  Google Scholar 

  13. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88. https://doi.org/10.1016/j.immuni.2006.10.016.

    Article  PubMed  CAS  Google Scholar 

  14. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43. https://doi.org/10.1038/nature12612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43. https://doi.org/10.1038/ncb2730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015;526(7571):126–30. https://doi.org/10.1038/nature15250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. • Shimoto M, Sugiyama T, Nagasawa T. Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood. 2017;129(15):2124–31. https://doi.org/10.1182/blood-2016-09-740563. This article reveals that in contrast to previous assumptions many of the potential HSC niches in bone marrow are empty at normal conditions.

    Article  PubMed  CAS  Google Scholar 

  18. •• Coutu DL, Kokkaliaris KD, Kunz L, Schroeder T. Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nature. Biotech. 2017;35(12):1202–10. https://doi.org/10.1038/nbt.4006. Here, for the first time, the spatial distribution of various cell populations and extracellular structures in bone marrow are presented in detail and the image databank is now available for the scientific community.

    Article  CAS  Google Scholar 

  19. • Greenbaum A, Chan KY, Dobreva T, Brown D, Balani DH, Boyce R, et al. Bone CLARITY: clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci Transl Med. 2017;9(387):eaah6518. https://doi.org/10.1126/scitranslmed.aah6518. The methodology presented in this communication significantly improves the possibilities to analyze bone marrow niche composition and structure.

    Article  PubMed  Google Scholar 

  20. Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood. 2005;105(7):2631–9. https://doi.org/10.1182/blood-2004-06-2480.

    Article  PubMed  CAS  Google Scholar 

  21. Leisten I, Kramann R, Ventura Ferreira MS, Bovi M, Neuss S, Ziegler P, et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials. 2012;33(6):1736–47. https://doi.org/10.1016/j.biomaterials.2011.11.034.

    Article  PubMed  CAS  Google Scholar 

  22. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103(9):3258–64. https://doi.org/10.1182/blood-2003-11-4011.

    Article  PubMed  CAS  Google Scholar 

  23. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315–20. https://doi.org/10.1038/nm.3707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6. https://doi.org/10.1038/nm.3706.

    Article  PubMed  CAS  Google Scholar 

  25. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815–28. https://doi.org/10.1182/blood-2009-11-253534.

    Article  PubMed  CAS  Google Scholar 

  26. Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208(2):261–71. https://doi.org/10.1084/jem.20101688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133:571–3.

    Article  Google Scholar 

  28. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22. https://doi.org/10.1038/nrc3793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia. 2008;22(5):941–50. https://doi.org/10.1038/leu.2008.48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.

    PubMed  CAS  Google Scholar 

  31. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    Article  PubMed  Google Scholar 

  32. Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J, et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood. 2007;109(9):3706–12. Erratum in: Blood. 2007 Jul 1;110(1):17. https://doi.org/10.1182/blood-2006-08-041384.

    Article  PubMed  CAS  Google Scholar 

  33. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62. https://doi.org/10.1038/nature10783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Park SI, Lee C, Sadler WD, Koh AJ, Jones J, Seo JW, et al. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res. 2013;73(22):6574–83. https://doi.org/10.1158/0008-5472.CAN-12-4692.

    Article  PubMed  CAS  Google Scholar 

  35. Bianco P, Robey PG. Skeletal stem cells. Development. 2015;142(6):1023–7. https://doi.org/10.1242/dev.102210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13. https://doi.org/10.1242/jcs.02932.

    Article  PubMed  Google Scholar 

  37. Chen KG, Johnson KR, McKay RDG, Robey PG. Concise review: conceptualizing paralogous stem-cell niches and unfolding bone marrow progenitor cell identities. Stem Cells. 2018 Jan;36(1):11–21. https://doi.org/10.1002/stem.2711.

    Article  PubMed  Google Scholar 

  38. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991 Sep;9(5):641–50.

    Article  PubMed  CAS  Google Scholar 

  39. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  PubMed  CAS  Google Scholar 

  40. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36. https://doi.org/10.1016/j.cell.2007.08.025.

    Article  PubMed  CAS  Google Scholar 

  41. Chan CK, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, et al. Identification and specification of the mouse skeletal stem cell. Cell. 2015;160(1–2):285–98. https://doi.org/10.1016/j.cell.2014.12.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015;160(1–2):269–84. https://doi.org/10.1016/j.cell.2014.11.042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rucci N, Teti A. Osteomimicry: how the seed grows in the soil. Calcif Tissue Int. 2017; https://doi.org/10.1007/s00223-017-0365-1.

  44. Chan JK, Lam PY. Human mesenchymal stem cells and their paracrine factors for the treatment of brain tumors. Cancer Gene Ther. 2013;20(10):539–43. https://doi.org/10.1038/cgt.2013.59.

    Article  PubMed  CAS  Google Scholar 

  45. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63. https://doi.org/10.1038/nature06188.

    Article  PubMed  CAS  Google Scholar 

  46. Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013;4:1795. https://doi.org/10.1038/ncomms2766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7(332):ra63. https://doi.org/10.1126/scisignal.2005231.

    Article  PubMed  CAS  Google Scholar 

  48. Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, et al. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 2016;76(19):5832–44. https://doi.org/10.1158/0008-5472.CAN-16-1092.

    Article  PubMed  CAS  Google Scholar 

  49. Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer. 2017;16(1):31. https://doi.org/10.1186/s12943-017-0597-8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li W, Wang G, Cui J, Xue L, Cai L. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Exp Hematol. 2004;32(11):1088–96. https://doi.org/10.1016/j.exphem.2004.07.015.

    Article  PubMed  CAS  Google Scholar 

  51. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010;6(3):251–64. https://doi.org/10.1016/j.stem.2010.02.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347–62. https://doi.org/10.1016/j.molmed.2011.01.015.

    Article  PubMed  CAS  Google Scholar 

  53. Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev. 2006;25(4):521–9. https://doi.org/10.1007/s10555-006-9036-9.

    Article  PubMed  Google Scholar 

  54. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10(11):1349–55. https://doi.org/10.1038/ncb1794.

    Article  PubMed  CAS  Google Scholar 

  55. Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J, et al. Origin of monocytes and macrophages in a committed progenitor. Nat Immunol. 2013;14(8):821–30. https://doi.org/10.1038/ni.2638.

    Article  PubMed  CAS  Google Scholar 

  56. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804. https://doi.org/10.1016/j.immuni.2013.04.004.

    Article  PubMed  CAS  Google Scholar 

  57. •• Mohamad SF, Xu L, Ghosh J, Childress PJ, Abeysekera I, Himes ER, et al. Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function. Blood Adv. 2017;1(26):2520–8. https://doi.org/10.1182/bloodadvances.2017011304. In this study, a crosstalk between osteomacs, osteoblasts, and megakaryocytes in regulation of HSCs is presented for the first time. Further, the phenotype and function of osteomacs were shown to differ from bone marrow macrophages in this context.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu AC, Raggatt LJ, Alexander KA, Pettit AR. Unraveling macrophage contributions to bone repair. Bonekey Rep. 2013;2:373. https://doi.org/10.1038/bonekey.2013.107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. • Alexander KA, Raggatt LJ, Millard S, Batoon L, Chiu-Ku Wu A, Chang MK, et al. Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunol Cell Biol. 2017;95(1):7–16. https://doi.org/10.1038/icb.2016.74. This study demonstrates the heterogeneity of osteomacs during trauma healing.

    Article  PubMed  CAS  Google Scholar 

  60. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232–44.

    Article  PubMed  CAS  Google Scholar 

  61. Bozec A, Soulat D. Latest perspectives on macrophages in bone homeostasis. Pflugers Arch. 2017;469(3–4):517–25. https://doi.org/10.1007/s00424-017-1952-8.

    Article  PubMed  CAS  Google Scholar 

  62. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. https://doi.org/10.1038/nri2448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, Reedquist KA, et al. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods. 2012;375(1–2):196–206. https://doi.org/10.1016/j.jim.2011.10.013.

    Article  PubMed  CAS  Google Scholar 

  65. Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol. 2012;13(11):1072–82. https://doi.org/10.1038/ni.2408.

    Article  PubMed  CAS  Google Scholar 

  66. •• Hur J, Choi JI, Lee H, Nham P, Kim TW, Chae CW, et al. CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell. 2016;18(4):508–21. https://doi.org/10.1016/j.stem.2016.01.013. This article identifies a novel interaction mechanism, by which a specific subset of macrophages maintains the dormancy of HSCs. It is possible that similar mechanisms could also play a role in DTC dormancy.

    Article  PubMed  CAS  Google Scholar 

  67. Heideveld E, van den Akker E. Digesting the role of bone marrow macrophages on hematopoiesis. Immunobiology. 2017;222(6):814–22. https://doi.org/10.1016/j.imbio.2016.11.007.

    Article  PubMed  CAS  Google Scholar 

  68. •• Espagnolle N, Balguerie A, Arnaud E, Sensebé L, Varin A. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Rep. 2017;8(4):961–76. https://doi.org/10.1016/j.stemcr.2017.02.008. In this communication different signaling mechanisms were shown to be active in M1 and M2 polarized macrophages in regulation of the immunosuppressive functions of MSCs. This finding may be critical in MSC-based cell therapies.

    Article  CAS  Google Scholar 

  69. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;14;208(3):421–8. https://doi.org/10.1084/jem.20110132.

    Article  CAS  Google Scholar 

  70. • Soki FN, Cho SW, Kim YW, Jones JD, Park SI, Koh AJ, et al. Bone marrow macrophages support prostate cancer growth in bone. Oncotarget. 2015;3;6(34):35782–96. https://doi.org/10.18632/oncotarget.6042. This publication demonstrates that cancer cells similarly alter macrophage phenotype in bone marrow microenvironment as has previously been demonstrated for soft tissues.

    Article  Google Scholar 

  71. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6. https://doi.org/10.1038/nm.3706.

    Article  PubMed  CAS  Google Scholar 

  72. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;27;452(7186):442–7. https://doi.org/10.1038/nature06685.

    Article  CAS  Google Scholar 

  73. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147(5):1146–58. https://doi.org/10.1016/j.cell.2011.09.053.

    Article  PubMed  CAS  Google Scholar 

  74. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12(6):657–64. https://doi.org/10.1038/nm1417.

    Article  PubMed  CAS  Google Scholar 

  75. Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SE, Wakkach A, Blin-Wakkach C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 2012;209(3):537–49. https://doi.org/10.1084/jem.20110994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439(7076):599–603. https://doi.org/10.1038/nature04247.

    Article  PubMed  CAS  Google Scholar 

  77. Blin-Wakkach C, Rouleau M, Wakkach A. Roles of osteoclasts in the control of medullary hematopoietic niches. Arch Biochem Biophys. 2014;561:29–37. https://doi.org/10.1016/j.abb.2014.06.032.

    Article  PubMed  CAS  Google Scholar 

  78. Feller L, Kramer B, Lemmer J. A short account of metastatic bone disease. Cancer Cell Int. 2011;11:24. https://doi.org/10.1186/1475-2867-11-24.

    Article  PubMed  PubMed Central  Google Scholar 

  79. •• Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 2017;19(10):1274–85. https://doi.org/10.1038/ncb3613. In this study, Wnt signaling was demonstrated as a central regulatory mechanism for the tropism of breast cancer metastasis.

    Article  PubMed  CAS  Google Scholar 

  80. •• Krzeszinski JY, Schwaid AG, Cheng WY, Jin Z, Gallegos ZR, Saghatelian A, et al. Lipid osteoclastokines regulate breast cancer bone metastasis. Endocrinology. 2017;158(3):477–89. https://doi.org/10.1210/en.2016-1570. A novel, interesting role for osteoclast lipid secretome in bone metastasis formation is described in this article.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorma A. Määttä.

Ethics declarations

Conflict of Interest

Terhi J. Heino and Jorma A. Määttä declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biology of Bone Metastasis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heino, T.J., Määttä, J.A. Bone Marrow Niche: Role of Different Cells in Bone Metastasis. Curr Mol Bio Rep 4, 80–87 (2018). https://doi.org/10.1007/s40610-018-0091-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-018-0091-0

Keywords

Navigation