Advertisement

Current Molecular Biology Reports

, Volume 4, Issue 2, pp 80–87 | Cite as

Bone Marrow Niche: Role of Different Cells in Bone Metastasis

  • Terhi J. Heino
  • Jorma A. Määttä
Molecular Biology of Bone Metastasis (H Taipaleenmäki, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Molecular Biology of Bone Metastasis

Abstract

Purpose of Review

This report summarizes current knowledge of bone marrow hematopoietic stem cell (HSC) niche, focusing on the identification of niche cells and molecular mechanisms involved in HSC maintenance and bone metastasis.

Recent Findings

Novel imaging techniques are greatly improving our understanding of bone marrow niche and latest studies have revealed several complex multicellular regulatory mechanisms of niche function. Especially, the intriguing role of bone marrow macrophages and osteomacs is an emerging topic in the field. It appears that, e.g., macrophage polarization is important for communication with bone marrow stromal cells (BMSCs). Bone marrow is also a favorable environment for disseminated tumor cells and recent data shows that various niche cell types, including endothelial cells and BMSCs, regulate the progression of bone metastasis.

Summary

Bone marrow niche represents a multicellular system with complex interactions. Emerging data is providing us with a deeper understanding of this fascinating tissue and its role in metastasis.

Keywords

Bone marrow niche Hematopoietic stem cells Bone marrow stromal cells Myeloid cells Bone metastasis Disseminated tumor cells 

Notes

Compliance with Ethical Standards

Conflict of Interest

Terhi J. Heino and Jorma A. Määttä declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.PubMedGoogle Scholar
  2. 2.
    Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977;91(3):335–44.CrossRefPubMedGoogle Scholar
  3. 3.
    Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179(5):1677–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.  https://doi.org/10.1038/nrc2621.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121(4):1298–312.  https://doi.org/10.1172/JCI43414.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang N, Docherty FE, Brown HK, Reeves KJ, Fowles AC, Ottewell PD, et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res. 2014;29(12):2688–96.  https://doi.org/10.1002/jbmr.2300.CrossRefPubMedGoogle Scholar
  7. 7.
    Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73.  https://doi.org/10.1126/scitranslmed.aad4059.CrossRefPubMedGoogle Scholar
  8. 8.
    Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17.  https://doi.org/10.1038/ncb2767.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62. Erratum in: Science 1989:244(4908):1030CrossRefPubMedGoogle Scholar
  10. 10.
    Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149–61.  https://doi.org/10.1016/j.cell.2004.07.004.CrossRefPubMedGoogle Scholar
  11. 11.
    Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C, et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell. 2012;150(2):351–65.  https://doi.org/10.1016/j.cell.2012.05.041.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21.  https://doi.org/10.1016/j.cell.2005.05.026.CrossRefPubMedGoogle Scholar
  13. 13.
    Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.  https://doi.org/10.1016/j.immuni.2006.10.016.CrossRefPubMedGoogle Scholar
  14. 14.
    Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43.  https://doi.org/10.1038/nature12612.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43.  https://doi.org/10.1038/ncb2730.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015;526(7571):126–30.  https://doi.org/10.1038/nature15250.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    • Shimoto M, Sugiyama T, Nagasawa T. Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood. 2017;129(15):2124–31.  https://doi.org/10.1182/blood-2016-09-740563. This article reveals that in contrast to previous assumptions many of the potential HSC niches in bone marrow are empty at normal conditions. CrossRefPubMedGoogle Scholar
  18. 18.
    •• Coutu DL, Kokkaliaris KD, Kunz L, Schroeder T. Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nature. Biotech. 2017;35(12):1202–10.  https://doi.org/10.1038/nbt.4006. Here, for the first time, the spatial distribution of various cell populations and extracellular structures in bone marrow are presented in detail and the image databank is now available for the scientific community. Google Scholar
  19. 19.
    • Greenbaum A, Chan KY, Dobreva T, Brown D, Balani DH, Boyce R, et al. Bone CLARITY: clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci Transl Med. 2017;9(387):eaah6518.  https://doi.org/10.1126/scitranslmed.aah6518. The methodology presented in this communication significantly improves the possibilities to analyze bone marrow niche composition and structure. CrossRefPubMedGoogle Scholar
  20. 20.
    Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood. 2005;105(7):2631–9.  https://doi.org/10.1182/blood-2004-06-2480.CrossRefPubMedGoogle Scholar
  21. 21.
    Leisten I, Kramann R, Ventura Ferreira MS, Bovi M, Neuss S, Ziegler P, et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials. 2012;33(6):1736–47.  https://doi.org/10.1016/j.biomaterials.2011.11.034.CrossRefPubMedGoogle Scholar
  22. 22.
    Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103(9):3258–64.  https://doi.org/10.1182/blood-2003-11-4011.CrossRefPubMedGoogle Scholar
  23. 23.
    Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315–20.  https://doi.org/10.1038/nm.3707.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6.  https://doi.org/10.1038/nm.3706.CrossRefPubMedGoogle Scholar
  25. 25.
    Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815–28.  https://doi.org/10.1182/blood-2009-11-253534.CrossRefPubMedGoogle Scholar
  26. 26.
    Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208(2):261–71.  https://doi.org/10.1084/jem.20101688.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133:571–3.CrossRefGoogle Scholar
  28. 28.
    Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22.  https://doi.org/10.1038/nrc3793.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shiozawa Y, Havens AM, Pienta KJ, Taichman RS. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia. 2008;22(5):941–50.  https://doi.org/10.1038/leu.2008.48.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.PubMedGoogle Scholar
  31. 31.
    Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J, et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood. 2007;109(9):3706–12. Erratum in: Blood. 2007 Jul 1;110(1):17.  https://doi.org/10.1182/blood-2006-08-041384.CrossRefPubMedGoogle Scholar
  33. 33.
    Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62.  https://doi.org/10.1038/nature10783.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Park SI, Lee C, Sadler WD, Koh AJ, Jones J, Seo JW, et al. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res. 2013;73(22):6574–83.  https://doi.org/10.1158/0008-5472.CAN-12-4692.CrossRefPubMedGoogle Scholar
  35. 35.
    Bianco P, Robey PG. Skeletal stem cells. Development. 2015;142(6):1023–7.  https://doi.org/10.1242/dev.102210.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13.  https://doi.org/10.1242/jcs.02932. CrossRefPubMedGoogle Scholar
  37. 37.
    Chen KG, Johnson KR, McKay RDG, Robey PG. Concise review: conceptualizing paralogous stem-cell niches and unfolding bone marrow progenitor cell identities. Stem Cells. 2018 Jan;36(1):11–21.  https://doi.org/10.1002/stem.2711.CrossRefPubMedGoogle Scholar
  38. 38.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991 Sep;9(5):641–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36.  https://doi.org/10.1016/j.cell.2007.08.025.CrossRefPubMedGoogle Scholar
  41. 41.
    Chan CK, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, et al. Identification and specification of the mouse skeletal stem cell. Cell. 2015;160(1–2):285–98.  https://doi.org/10.1016/j.cell.2014.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015;160(1–2):269–84.  https://doi.org/10.1016/j.cell.2014.11.042.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rucci N, Teti A. Osteomimicry: how the seed grows in the soil. Calcif Tissue Int. 2017;  https://doi.org/10.1007/s00223-017-0365-1.
  44. 44.
    Chan JK, Lam PY. Human mesenchymal stem cells and their paracrine factors for the treatment of brain tumors. Cancer Gene Ther. 2013;20(10):539–43.  https://doi.org/10.1038/cgt.2013.59.CrossRefPubMedGoogle Scholar
  45. 45.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.  https://doi.org/10.1038/nature06188.CrossRefPubMedGoogle Scholar
  46. 46.
    Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013;4:1795.  https://doi.org/10.1038/ncomms2766.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7(332):ra63.  https://doi.org/10.1126/scisignal.2005231.CrossRefPubMedGoogle Scholar
  48. 48.
    Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, et al. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 2016;76(19):5832–44.  https://doi.org/10.1158/0008-5472.CAN-16-1092.CrossRefPubMedGoogle Scholar
  49. 49.
    Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer. 2017;16(1):31.  https://doi.org/10.1186/s12943-017-0597-8. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Li W, Wang G, Cui J, Xue L, Cai L. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Exp Hematol. 2004;32(11):1088–96.  https://doi.org/10.1016/j.exphem.2004.07.015.CrossRefPubMedGoogle Scholar
  51. 51.
    Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010;6(3):251–64.  https://doi.org/10.1016/j.stem.2010.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347–62.  https://doi.org/10.1016/j.molmed.2011.01.015.CrossRefPubMedGoogle Scholar
  53. 53.
    Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev. 2006;25(4):521–9.  https://doi.org/10.1007/s10555-006-9036-9.CrossRefPubMedGoogle Scholar
  54. 54.
    Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10(11):1349–55.  https://doi.org/10.1038/ncb1794.CrossRefPubMedGoogle Scholar
  55. 55.
    Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J, et al. Origin of monocytes and macrophages in a committed progenitor. Nat Immunol. 2013;14(8):821–30.  https://doi.org/10.1038/ni.2638.CrossRefPubMedGoogle Scholar
  56. 56.
    Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804.  https://doi.org/10.1016/j.immuni.2013.04.004.CrossRefPubMedGoogle Scholar
  57. 57.
    •• Mohamad SF, Xu L, Ghosh J, Childress PJ, Abeysekera I, Himes ER, et al. Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function. Blood Adv. 2017;1(26):2520–8.  https://doi.org/10.1182/bloodadvances.2017011304. In this study, a crosstalk between osteomacs, osteoblasts, and megakaryocytes in regulation of HSCs is presented for the first time. Further, the phenotype and function of osteomacs were shown to differ from bone marrow macrophages in this context. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wu AC, Raggatt LJ, Alexander KA, Pettit AR. Unraveling macrophage contributions to bone repair. Bonekey Rep. 2013;2:373.  https://doi.org/10.1038/bonekey.2013.107.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    • Alexander KA, Raggatt LJ, Millard S, Batoon L, Chiu-Ku Wu A, Chang MK, et al. Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunol Cell Biol. 2017;95(1):7–16.  https://doi.org/10.1038/icb.2016.74. This study demonstrates the heterogeneity of osteomacs during trauma healing. CrossRefPubMedGoogle Scholar
  60. 60.
    Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232–44.CrossRefPubMedGoogle Scholar
  61. 61.
    Bozec A, Soulat D. Latest perspectives on macrophages in bone homeostasis. Pflugers Arch. 2017;469(3–4):517–25.  https://doi.org/10.1007/s00424-017-1952-8.CrossRefPubMedGoogle Scholar
  62. 62.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.  https://doi.org/10.1038/nri2448.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.  https://doi.org/10.1016/j.immuni.2014.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, Reedquist KA, et al. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods. 2012;375(1–2):196–206.  https://doi.org/10.1016/j.jim.2011.10.013.CrossRefPubMedGoogle Scholar
  65. 65.
    Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol. 2012;13(11):1072–82.  https://doi.org/10.1038/ni.2408.CrossRefPubMedGoogle Scholar
  66. 66.
    •• Hur J, Choi JI, Lee H, Nham P, Kim TW, Chae CW, et al. CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell. 2016;18(4):508–21.  https://doi.org/10.1016/j.stem.2016.01.013. This article identifies a novel interaction mechanism, by which a specific subset of macrophages maintains the dormancy of HSCs. It is possible that similar mechanisms could also play a role in DTC dormancy. CrossRefPubMedGoogle Scholar
  67. 67.
    Heideveld E, van den Akker E. Digesting the role of bone marrow macrophages on hematopoiesis. Immunobiology. 2017;222(6):814–22.  https://doi.org/10.1016/j.imbio.2016.11.007.CrossRefPubMedGoogle Scholar
  68. 68.
    •• Espagnolle N, Balguerie A, Arnaud E, Sensebé L, Varin A. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Rep. 2017;8(4):961–76.  https://doi.org/10.1016/j.stemcr.2017.02.008. In this communication different signaling mechanisms were shown to be active in M1 and M2 polarized macrophages in regulation of the immunosuppressive functions of MSCs. This finding may be critical in MSC-based cell therapies. CrossRefGoogle Scholar
  69. 69.
    Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;14;208(3):421–8.  https://doi.org/10.1084/jem.20110132.CrossRefGoogle Scholar
  70. 70.
    • Soki FN, Cho SW, Kim YW, Jones JD, Park SI, Koh AJ, et al. Bone marrow macrophages support prostate cancer growth in bone. Oncotarget. 2015;3;6(34):35782–96.  https://doi.org/10.18632/oncotarget.6042. This publication demonstrates that cancer cells similarly alter macrophage phenotype in bone marrow microenvironment as has previously been demonstrated for soft tissues. Google Scholar
  71. 71.
    Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6.  https://doi.org/10.1038/nm.3706.CrossRefPubMedGoogle Scholar
  72. 72.
    Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;27;452(7186):442–7.  https://doi.org/10.1038/nature06685.CrossRefGoogle Scholar
  73. 73.
    Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147(5):1146–58.  https://doi.org/10.1016/j.cell.2011.09.053.CrossRefPubMedGoogle Scholar
  74. 74.
    Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12(6):657–64.  https://doi.org/10.1038/nm1417.CrossRefPubMedGoogle Scholar
  75. 75.
    Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SE, Wakkach A, Blin-Wakkach C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 2012;209(3):537–49.  https://doi.org/10.1084/jem.20110994.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439(7076):599–603.  https://doi.org/10.1038/nature04247.CrossRefPubMedGoogle Scholar
  77. 77.
    Blin-Wakkach C, Rouleau M, Wakkach A. Roles of osteoclasts in the control of medullary hematopoietic niches. Arch Biochem Biophys. 2014;561:29–37.  https://doi.org/10.1016/j.abb.2014.06.032.CrossRefPubMedGoogle Scholar
  78. 78.
    Feller L, Kramer B, Lemmer J. A short account of metastatic bone disease. Cancer Cell Int. 2011;11:24.  https://doi.org/10.1186/1475-2867-11-24.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    •• Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 2017;19(10):1274–85.  https://doi.org/10.1038/ncb3613. In this study, Wnt signaling was demonstrated as a central regulatory mechanism for the tropism of breast cancer metastasis. CrossRefPubMedGoogle Scholar
  80. 80.
    •• Krzeszinski JY, Schwaid AG, Cheng WY, Jin Z, Gallegos ZR, Saghatelian A, et al. Lipid osteoclastokines regulate breast cancer bone metastasis. Endocrinology. 2017;158(3):477–89.  https://doi.org/10.1210/en.2016-1570. A novel, interesting role for osteoclast lipid secretome in bone metastasis formation is described in this article. PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biomedicine, Faculty of MedicineUniversity of TurkuTurkuFinland

Personalised recommendations