Skip to main content

Advertisement

Log in

Bone Pain Associated with Acidic Cancer Microenvironment

  • Molecular Biology of Bone Metastasis (H Taipaleenmäki, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Majority of patients with solid and hematologic cancers associated with osteolytic bone disease suffer from severe uncontrollable bone pain. Treatment of bone pain is an important goal in the management of these cancer patients. However, our understanding of the mechanism underlying cancer-associated bone pain (CABP) is limited and current treatments for CABP are ineffective and unsatisfactory. In this review, the pathophysiology of CABP will be discussed with a special focus on cancer-created acidic bone microenvironment as a potential therapeutic target.

Recent Findings

Recent accumulating findings that sensory nerves (SNs) densely innervate bone suggest that CABP can be induced as a consequence of SN activation by the pathologic changes in bone microenvironment. Cancer cells proliferating in bone secrete protons and lactate resulting from the Warburg effect, creating acidic bone microenvironment. In parallel, cancer in bone increases and activates osteoclasts, which release protons to degrade bone minerals, also making bone microenvironment acidic. The acidic bone microenvironment sensitizes and excites bone-innervating SNs to evoke CABP via upregulation and activation of the acid-sensing nociceptors such as ASIC3 and TRPV1 expressed on SNs. Blockade of the creation of the acidic bone microenvironment and/or interruption of the activation of these nociceptors decrease SN stimulation and CABP.

Summary

Determination of the mechanism by which the acidic cancer microenvironment is generated and by which SN is excited and sensitized via activation of the acid-sensing nociceptors would promote to design mechanism-based novel and effective therapeutic interventions for the management of CABP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–9s. https://doi.org/10.1158/1078-0432.ccr-06-0931.

    Article  PubMed  Google Scholar 

  2. Rizzoli R, Body JJ, Brandi ML, Cannata-Andia J, Chappard D, El Maghraoui A, et al. Cancer-associated bone disease. Osteoporos Int. 2013;24(12):2929–53. https://doi.org/10.1007/s00198-013-2530-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Burrows M, Dibble SL, Miaskowski C. Differences in outcomes among patients experiencing different types of cancer-related pain. Oncol Nurs Forum. 1998;25(4):735–41.

    PubMed  CAS  Google Scholar 

  4. Poulos AR, Gertz MA, Pankratz VS, Post-White J. Pain, mood disturbance, and quality of life in patients with multiple myeloma. Oncol Nurs Forum. 2001;28(7):1163–71.

    PubMed  CAS  Google Scholar 

  5. •• Mercadante S. Malignant bone pain: pathophysiology and treatment. Pain. 1997;69(1–2):1–18. This paper is one of the earliest articles that introduced the clinical and basic features of CABP

    Article  PubMed  CAS  Google Scholar 

  6. Patrick DL, Ferketich SL, Frame PS, Harris JJ, Hendricks CB, Levin B, et al. National Institutes of Health State-of-the-Science Conference statement: symptom management in cancer: pain, depression, and fatigue, July 15-17, 2002. J Natl Cancer Inst. 2003;95(15):1110–7.

    Article  PubMed  Google Scholar 

  7. •• Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci. 2006;7(10):797–809. https://doi.org/10.1038/nrn1914. This paper dissected and characterized CABP based on preclinical studies using animal models of bone cancer

    Article  PubMed  CAS  Google Scholar 

  8. Falk S, Dickenson AH. Pain and nociception: mechanisms of cancer-induced bone pain. J Clin Oncol. 2014;32(16):1647–54. https://doi.org/10.1200/jco.2013.51.7219.

    Article  PubMed  CAS  Google Scholar 

  9. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84. https://doi.org/10.1016/j.cell.2009.09.028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–66.

    Article  PubMed  CAS  Google Scholar 

  11. •• Hiasa M, Okui T, Allette YM, Ripsch MS, Sun-Wada GH, Wakabayashi H, et al. Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Res. 2017;77(6):1283–95. https://doi.org/10.1158/0008-5472.can-15-3545. This study shows the importance of the creation of acidic cancer environment and the acid-sensing nociceptor ASIC3 in CABP associated with multiple myeloma

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. • Wakabayashi H, Wakisaka S, Hiraga T, Hata K, Nishimura R, Tominaga M, Yoneda T Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J Bone Miner Metab 2017. https://doi.org/10.1007/s00774-017-0842-7. This work demonstrates critical role of the acid-sensing nociceptor TRPV1 in CABP associated lung cancer using TRPV1 −/− mice.

  13. Benemei S, Nicoletti P, Capone JG, Geppetti P. CGRP receptors in the control of pain and inflammation. Curr Opin Pharmacol. 2009;9(1):9–14. https://doi.org/10.1016/j.coph.2008.12.007.

    Article  PubMed  CAS  Google Scholar 

  14. Salmon AM, Damaj MI, Marubio LM, Epping-Jordan MP, Merlo-Pich E, Changeux JP. Altered neuroadaptation in opiate dependence and neurogenic inflammatory nociception in alpha CGRP-deficient mice. Nat Neurosci. 2001;4(4):357–8. https://doi.org/10.1038/86001.

    Article  PubMed  CAS  Google Scholar 

  15. Mantyh WG, Jimenez-Andrade JM, Stake JI, Bloom AP, Kaczmarska MJ, Taylor RN, et al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience. 2010;171(2):588–98. https://doi.org/10.1016/j.neuroscience.2010.08.056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jimenez-Andrade JM, Bloom AP, Stake JI, Mantyh WG, Taylor RN, Freeman KT, et al. Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J Neurosci. 2010;30(44):14649–56. https://doi.org/10.1523/jneurosci.3300-10.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Johnson RW, Suva LJ. Hallmarks of bone metastasis. Calcif Tissue Int. 2017;102:141–51. https://doi.org/10.1007/s00223-017-0362-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J Bone Miner Metab. 2007;25(2):99–104. https://doi.org/10.1007/s00774-006-0734-8.

    Article  PubMed  Google Scholar 

  19. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413(6852):203–10. https://doi.org/10.1038/35093019.

    Article  PubMed  CAS  Google Scholar 

  20. Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39(3):508–19. https://doi.org/10.1111/ejn.12462.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Krames ES. The dorsal root ganglion in chronic pain and as a target for neuromodulation: a review. Neuromodulation. 2015;18(1):24–32; discussion 32. https://doi.org/10.1111/ner.12247.

    Article  PubMed  Google Scholar 

  22. Cooper RR. Nerves in cortical bone. Science. 1968;160(3825):327–8.

    Article  PubMed  CAS  Google Scholar 

  23. Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone. 1999;25(6):623–9.

    Article  PubMed  CAS  Google Scholar 

  24. Irie K, Hara-Irie F, Ozawa H, Yajima T. Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. Microsc Res Tech. 2002;58(2):85–90. https://doi.org/10.1002/jemt.10122.

    Article  PubMed  CAS  Google Scholar 

  25. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497(7450):490–3. https://doi.org/10.1038/nature12115.

    Article  PubMed  CAS  Google Scholar 

  26. Paolucci T, Saraceni VM, Piccinini G. Management of chronic pain in osteoporosis: challenges and solutions. J Pain Res. 2016;9:177–86. https://doi.org/10.2147/jpr.s83574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Muralidharan A, Smith MT. Pathobiology and management of prostate cancer-induced bone pain: recent insights and future treatments. Inflammopharmacology. 2013;21(5):339–63. https://doi.org/10.1007/s10787-013-0183-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lozano-Ondoua AN, Symons-Liguori AM, Vanderah TW. Cancer-induced bone pain: mechanisms and models. Neurosci Lett. 2013;557(Pt A):52–9. https://doi.org/10.1016/j.neulet.2013.08.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yoneda T, Hiasa M, Nagata Y, Okui T, White FA. Contribution of acidic extracellular microenvironment of cancer-colonized bone to bone pain. Biochim Biophys Acta. 2015;1848(10 Pt B):2677–84. https://doi.org/10.1016/j.bbamem.2015.02.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Maes C, Carmeliet G, Schipani E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 2012;8(6):358–66. https://doi.org/10.1038/nrrheum.2012.36.

    Article  PubMed  CAS  Google Scholar 

  31. Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 2008;9(4):285–96. https://doi.org/10.1038/nrm2354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10(10):767–77. https://doi.org/10.1038/nrd3554.

    Article  PubMed  CAS  Google Scholar 

  33. Parks SK, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer. 2013;13(9):611–23. https://doi.org/10.1038/nrc3579.

    Article  PubMed  CAS  Google Scholar 

  34. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8.

    Article  PubMed  CAS  Google Scholar 

  35. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93. https://doi.org/10.1038/nrc867.

    Article  PubMed  CAS  Google Scholar 

  36. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64. https://doi.org/10.1056/NEJMra030831.

    Article  PubMed  CAS  Google Scholar 

  37. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–25. https://doi.org/10.1038/nrc3055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun. 2005;328(3):679–87. https://doi.org/10.1016/j.bbrc.2004.11.070.

    Article  PubMed  CAS  Google Scholar 

  39. Cleeland CS, Body JJ, Stopeck A, von Moos R, Fallowfield L, Mathias SD, et al. Pain outcomes in patients with advanced breast cancer and bone metastases: results from a randomized, double-blind study of denosumab and zoledronic acid. Cancer. 2013;119(4):832–8. https://doi.org/10.1002/cncr.27789.

    Article  PubMed  CAS  Google Scholar 

  40. • von Moos R, Costa L, Ripamonti CI, Niepel D, Santini D. Improving quality of life in patients with advanced cancer: targeting metastatic bone pain. Eur J Cancer. 2017;71:80–94. https://doi.org/10.1016/j.ejca.2016.10.021. This review paper describes the impact of CABP and how adequate management of CABP can optimize the quality of life in cancer patients

    Article  Google Scholar 

  41. Terpos E, Christoulas D, Gavriatopoulou M. Biology and treatment of myeloma related bone disease. Metabolism, 2017. https://doi.org/10.1016/j.metabol.2017.11.012, 2018.

  42. Honore P, Luger NM, Sabino MA, Schwei MJ, Rogers SD, Mach DB, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med. 2000;6(5):521–8. https://doi.org/10.1038/74999.

    Article  PubMed  CAS  Google Scholar 

  43. Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol. 2012;44(9):1422–35. https://doi.org/10.1016/j.biocel.2012.05.014.

    Article  PubMed  CAS  Google Scholar 

  44. • Maeda H, Kowada T, Kikuta J, Furuya M, Shirazaki M, Mizukami S, et al. Real-time intravital imaging of pH variation associated with osteoclast activity. Nat Chem Biol. 2016;12(8):579–85. https://doi.org/10.1038/nchembio.2096. This study introduces a new technique that allows quantitation of osteoclast activity and time-lapse imaging of its in vivo function during bone resorption using intravital imaging by two-photon excitation microscopy together with small fluorescent functional probes

    Article  PubMed  CAS  Google Scholar 

  45. Henriksen K, Sorensen MG, Jensen VK, Dziegiel MH, Nosjean O, Karsdal MA. Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Calcif Tissue Int. 2008;83(3):230–42. https://doi.org/10.1007/s00223-008-9168-8.

    Article  PubMed  CAS  Google Scholar 

  46. Nagae M, Hiraga T, Wakabayashi H, Wang L, Iwata K, Yoneda T. Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone. 2006;39(5):1107–15. https://doi.org/10.1016/j.bone.2006.04.033.

    Article  PubMed  CAS  Google Scholar 

  47. Marelli S, Pace F. Rabeprazole for the treatment of acid-related disorders. Expert Rev Gastroenterol Hepatol. 2012;6(4):423–35. https://doi.org/10.1586/egh.12.18.

    Article  PubMed  CAS  Google Scholar 

  48. •• Peppicelli S, Andreucci E, Ruzzolini J, Laurenzana A, Margheri F, Fibbi G, et al. The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci. 2017;74(15):2761–71. https://doi.org/10.1007/s00018-017-2496-y. This paper describes the critical role of acidity of cancer environment in stimulation of chemo- and radio-resistance, suppression of host immuno-surveilance, establishment of dormancy, and prognosis of cancer patients

    Article  PubMed  CAS  Google Scholar 

  49. Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123(9):3685–92. https://doi.org/10.1172/jci69741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Halestrap AP. Monocarboxylic acid transport. Compr Physiol. 2013;3(4):1611–43. https://doi.org/10.1002/cphy.c130008.

    Article  PubMed  Google Scholar 

  51. Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience. 2007;145(1):11–9. https://doi.org/10.1016/j.neuroscience.2006.11.062.

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810–23. https://doi.org/10.1016/j.cell.2011.02.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gregory NS, Whitley PE, Sluka KA. Effect of intramuscular protons, lactate, and ATP on muscle hyperalgesia in rats. PLoS One. 2015;10(9):e0138576. https://doi.org/10.1371/journal.pone.0138576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Holzer P. Acid sensing by visceral afferent neurones. Acta Physiol (Oxf). 2011;201(1):63–75. https://doi.org/10.1111/j.1748-1716.2010.02143.x.

    Article  CAS  Google Scholar 

  55. Deval E, Gasull X, Noel J, Salinas M, Baron A, Diochot S, et al. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther. 2010;128(3):549–58. https://doi.org/10.1016/j.pharmthera.2010.08.006.

    Article  PubMed  CAS  Google Scholar 

  56. Olson TH, Riedl MS, Vulchanova L, Ortiz-Gonzalez XR, Elde R. An acid sensing ion channel (ASIC) localizes to small primary afferent neurons in rats. Neuroreport. 1998;9(6):1109–13.

    Article  PubMed  CAS  Google Scholar 

  57. Jahr H, van Driel M, van Osch GJ, Weinans H, van Leeuwen JP. Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun. 2005;337(1):349–54. https://doi.org/10.1016/j.bbrc.2005.09.054.

    Article  PubMed  CAS  Google Scholar 

  58. Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci. 2013;14(7):461–71. https://doi.org/10.1038/nrn3529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sun WH, Chen CC. Roles of proton-sensing receptors in the transition from acute to chronic pain. J Dent Res. 2016;95(2):135–42. https://doi.org/10.1177/0022034515618382.

    Article  PubMed  CAS  Google Scholar 

  60. Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain. 2003;106(3):229–39.

    Article  PubMed  CAS  Google Scholar 

  61. Karczewski J, Spencer RH, Garsky VM, Liang A, Leitl MD, Cato MJ, et al. Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br J Pharmacol. 2010;161(4):950–60. https://doi.org/10.1111/j.1476-5381.2010.00918.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, et al. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J. 2004;23(7):1516–25. https://doi.org/10.1038/sj.emboj.7600177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yu Y, Chen Z, Li WG, Cao H, Feng EG, Yu F, et al. A nonproton ligand sensor in the acid-sensing ion channel. Neuron. 2010;68(1):61–72. https://doi.org/10.1016/j.neuron.2010.09.001.

    Article  PubMed  CAS  Google Scholar 

  64. Hsieh WS, Kung CC, Huang SL, Lin SC, Sun WH. TDAG8, TRPV1, and ASIC3 involved in establishing hyperalgesic priming in experimental rheumatoid arthritis. Sci Rep. 2017;7(1):8870. https://doi.org/10.1038/s41598-017-09200-6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Qiu F, Wei X, Zhang S, Yuan W, Mi W. Increased expression of acid-sensing ion channel 3 within dorsal root ganglia in a rat model of bone cancer pain. Neuroreport. 2014;25(12):887–93. https://doi.org/10.1097/wnr.0000000000000182.

    Article  PubMed  CAS  Google Scholar 

  66. Feldman P, Due MR, Ripsch MS, Khanna R, White FA. The persistent release of HMGB1 contributes to tactile hyperalgesia in a rodent model of neuropathic pain. J Neuroinflammation. 2012;9:180. https://doi.org/10.1186/1742-2094-9-180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, et al. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci. 2004;24(38):8310–21. https://doi.org/10.1523/jneurosci.2396-04.2004.

    Article  PubMed  CAS  Google Scholar 

  68. Mamet J, Baron A, Lazdunski M, Voilley N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci. 2002;22(24):10662–70.

    Article  PubMed  CAS  Google Scholar 

  69. Marra S, Ferru-Clement R, Breuil V, Delaunay A, Christin M, Friend V, et al. Non-acidic activation of pain-related acid-sensing ion channel 3 by lipids. EMBO J. 2016;35(4):414–28. https://doi.org/10.15252/embj.201592335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13.

    Article  PubMed  CAS  Google Scholar 

  71. Lieben L, Carmeliet G. The involvement of TRP channels in bone homeostasis. Front Endocrinol (Lausanne). 2012;3:99. https://doi.org/10.3389/fendo.2012.00099.

    Article  Google Scholar 

  72. Ghilardi JR, Rohrich H, Lindsay TH, Sevcik MA, Schwei MJ, Kubota K, et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci. 2005;25(12):3126–31. https://doi.org/10.1523/jneurosci.3815-04.2005.

    Article  PubMed  CAS  Google Scholar 

  73. Niiyama Y, Kawamata T, Yamamoto J, Omote K, Namiki A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience. 2007;148(2):560–72. https://doi.org/10.1016/j.neuroscience.2007.05.049.

    Article  PubMed  CAS  Google Scholar 

  74. Niiyama Y, Kawamata T, Yamamoto J, Furuse S, Namiki A. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br J Anaesth. 2009;102(2):251–8. https://doi.org/10.1093/bja/aen347.

    Article  PubMed  CAS  Google Scholar 

  75. Nakanishi M, Hata K, Nagayama T, Sakurai T, Nishisho T, Wakabayashi H, et al. Acid activation of Trpv1 leads to an up-regulation of calcitonin gene-related peptide expression in dorsal root ganglion neurons via the CaMK-CREB cascade: a potential mechanism of inflammatory pain. Mol Biol Cell. 2010;21(15):2568–77. https://doi.org/10.1091/mbc.E10-01-0049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Xu Q, Zhang XM, Duan KZ, Gu XY, Han M, Liu BL, et al. Peripheral TGF-beta1 signaling is a critical event in bone cancer-induced hyperalgesia in rodents. J Neurosci. 2013;33(49):19099–111. https://doi.org/10.1523/jneurosci.4852-12.2013.

    Article  PubMed  CAS  Google Scholar 

  77. Li Y, Cai J, Han Y, Xiao X, Meng XL, Su L, et al. Enhanced function of TRPV1 via up-regulation by insulin-like growth factor-1 in a rat model of bone cancer pain. Eur J Pain. 2014;18(6):774–84. https://doi.org/10.1002/j.1532-2149.2013.00420.x.

    Article  PubMed  CAS  Google Scholar 

  78. Riera CE, Huising MO, Follett P, Leblanc M, Halloran J, Van Andel R, et al. TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell. 2014;157(5):1023–36. https://doi.org/10.1016/j.tem.2016.03.007.

    Article  PubMed  CAS  Google Scholar 

  79. • Riera CE, Dillin A. Emerging role of sensory perception in aging and metabolism. Trends Endocrinol Metab. 2016;27(5):294–303. https://doi.org/10.1016/j.cell.2014.03.051. This paper overviews the results of recent genetic studies using TRPV1 −/− mice that showed that sensory perception plays a role in influencing energy homeostasis and longevity

    Article  PubMed  CAS  Google Scholar 

  80. Moran MM. TRP channels as potential drug targets. Annu Rev Pharmacol Toxicol. 2018;58:309–30. https://doi.org/10.1146/annurev-pharmtox-010617-052832.

    Article  PubMed  CAS  Google Scholar 

  81. Jardin I, Lopez JJ, Diez R, Sanchez-Collado J, Cantonero C, Albarran L, et al. TRPs in pain sensation. Front Physiol. 2017;8:392. https://doi.org/10.3389/fphys.2017.00392.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29:355–84. https://doi.org/10.1146/annurev-cellbio-101011-155833.

    Article  PubMed  CAS  Google Scholar 

  83. Brederson JD, Kym PR, Szallasi A. Targeting TRP channels for pain relief. Eur J Pharmacol. 2013;716(1–3):61–76. https://doi.org/10.1016/j.ejphar.2013.03.003.

    Article  PubMed  CAS  Google Scholar 

  84. Dalal S, Bruera E. Access to opioid analgesics and pain relief for patients with cancer. Nat Rev Clin Oncol. 2013;10(2):108–16. https://doi.org/10.1038/nrclinonc.2012.237.

    Article  PubMed  CAS  Google Scholar 

  85. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with the use of morphine and opiates. J Intern Med. 2006;260(1):76–87. https://doi.org/10.1111/j.1365-2796.2006.01667.x.

    Article  PubMed  CAS  Google Scholar 

  86. Ballantyne JC, LaForge KS. Opioid dependence and addiction during opioid treatment of chronic pain. Pain. 2007;129(3):235–55. https://doi.org/10.1016/j.pain.2007.03.028.

    Article  PubMed  CAS  Google Scholar 

  87. Garami A, Ibrahim M, Gilbraith K, Khanna R, Pakai E, Miko A, et al. Transient receptor potential vanilloid 1 antagonists prevent anesthesia-induced hypothermia and decrease postincisional opioid dose requirements in rodents. Anesthesiology. 2017;127(5):813–23. https://doi.org/10.1097/aln.0000000000001812.

    Article  PubMed  CAS  Google Scholar 

  88. Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer. 2012;12(7):487–93. https://doi.org/10.1038/nrc3298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nishisho T, Hata K, Nakanishi M, Morita Y, Sun-Wada GH, Wada Y, et al. The a3 isoform vacuolar type H(+)-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res. 2011;9(7):845–55. https://doi.org/10.1158/1541-7786.mcr-10-0449.

    Article  PubMed  CAS  Google Scholar 

  90. McGuire C, Cotter K, Stransky L, Forgac M. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. Biochim Biophys Acta. 2016;1857(8):1213–8. https://doi.org/10.1016/j.bbabio.2016.02.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Liebig C, Ayala G, Wilks J, Verstovsek G, Liu H, Agarwal N, et al. Perineural invasion is an independent predictor of outcome in colorectal cancer. J Clin Oncol. 2009;27(31):5131–7. https://doi.org/10.1200/JCO.2009.22.4949.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361. https://doi.org/10.1126/science.1236361.

    Article  PubMed  Google Scholar 

  93. Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA, et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A. 2016;113(11):3078–83. https://doi.org/10.1073/pnas.1512603113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Chatzistefanou I, Lubek J, Markou K, Ord RA. The role of perineural invasion in treatment decisions for oral cancer patients: a review of the literature. J Cranio-Maxillofac Surg. 2017;45(6):821–5. https://doi.org/10.1016/j.jcms.2017.02.022.

    Article  Google Scholar 

  95. Yoneda T, Hiasa M, Nagata Y, Okui T, White FA. Acidic microenvironment and bone pain in cancer-colonized bone. Bonekey Rep. 2015;4:690. https://doi.org/10.1038/bonekey.2015.58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study is supported by the Project Development Team within the ICTSI NIH/NCRR (#TR000006) and start-up fund of Indiana University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Yoneda.

Ethics declarations

Conflict of Interest

Toshiyuki Yoneda, Masahiro Hiasa, and Tatsuo Okui declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biology of Bone Metastasis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, T., Hiasa, M. & Okui, T. Bone Pain Associated with Acidic Cancer Microenvironment. Curr Mol Bio Rep 4, 59–68 (2018). https://doi.org/10.1007/s40610-018-0089-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-018-0089-7

Keywords

Navigation