Skip to main content
Log in

Phenotype of Bone Marrow Adipose Tissue: Specificities of the Anatomical Distribution, Secretory Profile, Lipid Content, and Response to Nutritional Status

  • Molecular Biology of Bone Marrow Fat Adiposity (B van der Eerden, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Bone marrow adipose tissue (BMAT) is currently considered as a unique and typical fat depot, able to modulate the metabolism of bone cells that share the same microenvironment, with putative subsequent impact on skeletal health. The aim of the present review is to update knowledge related to the molecular phenotype of the BMAT adipocytes.

Recent Findings

Although sharing white and brown adipose tissue-like features, BMAT exhibits its own specific properties. It may consist of two sub-populations of adipocytes, ensuring different metabolic functions and presenting distinct lipidomic and genetic profiles. Current evidence highlights the dynamic lipid composition of BMAT, varying according to pathophysiological situations.

Summary

Since several studies are now demonstrating an alteration of BMAT lipid composition in bone diseases associated with a loss of bone integrity, the investigation of the qualitative aspect of marrow adiposity is currently overtaking its quantitative assessment. A better knowledge of the BMAT lipid content could enlarge the therapeutic potential for bone diseases such as osteoporosis and osteonecrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Paccou J, Hardouin P, Cotten A, Penel G, Cortet B. The role of bone marrow fat in skeletal health: usefulness and perspectives for clinicians. J Clin Endocrinol Metab. 2015;100(10):3613–21. https://doi.org/10.1210/jc.2015-2338.

    Article  CAS  PubMed  Google Scholar 

  2. Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA. Marrow adipose tissue: trimming the fat. Trends Endocrinol Metab. 2016;27(6):392–403. https://doi.org/10.1016/j.tem.2016.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. • Devlin MJ, Rosen CJ. The bone-fat interface: basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol. 2015;3(2):141–7. This work discusses the complexity of the relationship of marrow adipose tissue to other fat depots and explores its role in modulation of metabolic homeostasis, haemopoiesis, and osteogenesis. https://doi.org/10.1016/S2213-8587(14)70007-5.

  4. Blebea JS, Houseni M, Torigian DA, Fan C, Mavi A, Zhuge Y, et al. Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Semin Nucl Med. 2007;37(3):185–94. https://doi.org/10.1053/j.semnuclmed.2007.01.002.

    Article  PubMed  Google Scholar 

  5. Scheller EL, Troiano N, JN VH, Bouxsein MA, Fretz JA, Xi Y, et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 2014;537:123–39. https://doi.org/10.1016/B978-0-12-411619-1.00007-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature. 2014;510(7503):76–83. https://doi.org/10.1038/nature13477.

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS One. 2014;9:1–6.

    Google Scholar 

  8. Zhang Y, Khan D, Delling J, Tobiasch E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. Sci World J. 2012;2012:793823. https://doi.org/10.1100/2012/793823.

  9. Bianco P, Robey PG. Skeletal stem cells. Development. 2015;142(6):1023–7. https://doi.org/10.1242/dev.102210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev. 2001;2(4):239–54. https://doi.org/10.1046/j.1467-789X.2001.00042.x.

    Article  CAS  PubMed  Google Scholar 

  11. • Lecka-Czernik B, Rosen CJ. Skeletal integration of energy homeostasis: translational implications. Bone. 2016;82:35–41. This review summarizes the knowledge of common determinants in bone and adipose function as well as the translational implications of recent work in this field. https://doi.org/10.1016/j.bone.2015.07.026.

    Article  PubMed  Google Scholar 

  12. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity. 2011;19:49–53.

  13. Shen W, Scherzer R, Gantz M, Chen J, Punyanitya M, Lewis CE, et al. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab. 2012;97(4):1337–46. https://doi.org/10.1210/jc.2011-2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, et al. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94(6):2129–36. https://doi.org/10.1210/jc.2008-2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laharrague P, Fontanilles AM, Tkaczuk J, Corberand JX, Pénicaud L, Casteilla L. Inflammatory/haematopoietic cytokine production by human bone marrow adipocytes. John Libbe. Eur Cytokine Netw. 2000;11:634–9.

  16. •• Poloni A, Maurizi G, Serrani F, Mancini S, Zingaretti MC, Frontini A, et al. Molecular and functional characterization of human bone marrow adipocytes. Exp Hematol. 2013;41(6):558–66. This study characterizes human bone marrow adipocytes for their morphological, molecular, and immunophenotypic properties and defines their secretory profile. https://doi.org/10.1016/j.exphem.2013.02.005.

    Article  CAS  PubMed  Google Scholar 

  17. Laharrague P, Fontanilles AM, Tkaczuk J, Corberand JX, Pénicaud L, Casteilla L. European cytokine network. Eur Cytokine Netw. 2000;11:634–39.

  18. Liu L-F, Shen W-J, Ueno M, Patel S, Kraemer FB. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics. 2011;12:12. https://doi.org/10.1186/1471-2164-12-212.

  19. Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50(2):546–52. https://doi.org/10.1016/j.bone.2011.06.016.

    Article  CAS  PubMed  Google Scholar 

  20. Nishio M, Yoneshiro T, Nakahara M, Suzuki S, Saeki K, Hasegawa M, et al. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab. 2012;16(3):394–406. https://doi.org/10.1016/j.cmet.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  21. Rosenwald M, Perdikari A, Rülicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–67. https://doi.org/10.1038/ncb2740.

    Article  CAS  PubMed  Google Scholar 

  22. Tavassoli M. Marrow adipose cells. Histochemical identification of labile and stable components. Arch Pathol Lab Med. 1976;100(1):16–8.

    CAS  PubMed  Google Scholar 

  23. •• Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun. 2015;6. This work examines marrow adipose tissue (MAT) formation and regulation during development and following cold exposure using mouse models and defines the characteristics of the constitutive and regulated MAT. https://doi.org/10.1038/ncomms8808.

  24. Yeung DKW, Griffith JF, Antonio GE, Lee FKH, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22:279–85.

    Article  PubMed  Google Scholar 

  25. • Li X, Shet K, Xu K, Rodríguez JP, Pino AM, Kurhanewicz J, et al. Unsaturation level decreased in bone marrow fat of postmenopausal women with low bone density using high resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy. Bone. 2017;105:87–92. This study quantifies marrow adipose tissue (MAT) unsaturation profile of marrow samples from post-menopausal women using ex vivo high-resolution magnetic angle spinning proton NMR spectroscopy and investigates the relationship between MAT composition and bone mineral density. https://doi.org/10.1016/j.bone.2017.08.014.

    Article  PubMed  Google Scholar 

  26. Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28(8):1721–8. https://doi.org/10.1002/jbmr.1950.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maurin AC, Chavassieux PM, Frappart L, Delmas PD, Serre CM, Meunier PJ. Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone. 2000;26(5):485–9. https://doi.org/10.1016/S8756-3282(00)00252-0.

    Article  CAS  PubMed  Google Scholar 

  28. Clabaut A, Delplace S, Chauveau C, Hardouin P, Broux O. Human osteoblasts derived from mesenchymal stem cells express adipogenic markers upon coculture with bone marrow adipocytes. Differentiation. 2010;80(1):40–5. https://doi.org/10.1016/j.diff.2010.04.004.

    Article  CAS  PubMed  Google Scholar 

  29. •• Drosatos-Tampakaki Z, Drosatos K, Siegelin Y, Gong S, Khan S, Van Dyke T, et al. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J Bone Miner Res. 2014;29(5):1183–95. This work shows for the first time that increased palmitate levels affect bone health by altering precursor cell differentiation and enhancing receptor activator of NF-kB ligand (RANKL)-stimulated osteoclastogenesis. In contrast, oleate does not enhance osteoclast differentiation and inhibits palmitate-induced osteoclastogenesis. https://doi.org/10.1002/jbmr.2150.

  30. • Abdallah BM. Marrow adipocytes inhibit the differentiation of mesenchymal stem cells into osteoblasts via suppressing BMP-signaling. J Biomed Sci J Biomed Sci. 2017;24(1):11. This work demonstrates that marrow adipocytes exert a paracrine inhibitory effect on osteoblast differentiation from bone marrow MSC by blocking BMP signaling in a mechanism mediated by adipokines-induced NF-κB pathway activation. https://doi.org/10.1186/s12929-017-0321-4.

    Article  PubMed  Google Scholar 

  31. Taipaleenmäki H, Abdallah BM, AlDahmash A, Säämänen AM, Kassem M. Wnt signalling mediates the cross-talk between bone marrow derived pre-adipocytic and pre-osteoblastic cell populations. Exp Cell Res Elsevier Inc. 2011;317(56):–745.

  32. Hozumi A, Osaki M, Goto H, Sakamoto K, Inokuchi S, Shindo H. Bone marrow adipocytes support dexamethasone-induced osteoclast differentiation. Biochem Biophys Res Commun. 2009;382(4):780–4. https://doi.org/10.1016/j.bbrc.2009.03.111.

    Article  CAS  PubMed  Google Scholar 

  33. Goto H, Osaki M, Fukushima T, Sakamoto K, Hozumi A, Baba H, et al. Human bone marrow adipocytes support dexamethasone-induced osteoclast differentiation and function through RANKL expression. Biomed Res. 2011;32(1):37–44. https://doi.org/10.2220/biomedres.32.37.

    Article  CAS  PubMed  Google Scholar 

  34. Takeshita S, Fumoto T, Naoe Y, Ikeda K. Age-related marrow adipogenesis is linked to increased expression of RANKL. J Biol Chem. 2014;289(24):16699–710. https://doi.org/10.1074/jbc.M114.547919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan Y, Hanai J, Le PT, Bi R, Maridas D, DeMambro V, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 2017;25(72):–661.

  36. Cock T-A, Auwerx J. Leptin: cutting the fat off the bone. Lancet. 2003;362(9395):1572–4. https://doi.org/10.1016/S0140-6736(03)14747-2.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140(4):1630–8. https://doi.org/10.1210/endo.140.4.6637.

    Article  CAS  PubMed  Google Scholar 

  38. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–15. https://doi.org/10.1677/joe.0.1750405.

    Article  CAS  PubMed  Google Scholar 

  39. Ducy P, Amling M, Takeda S, Priemel M. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207. https://doi.org/10.1016/S0092-8674(00)81558-5.

    Article  CAS  PubMed  Google Scholar 

  40. Jürimäe J, Jürimäe T, Leppik A, Kums T. The influence of ghrelin, adiponectin, and leptin on bone mineral density in healthy postmenopausal women. J Bone Miner Metab. 2008;26(6):618–23. https://doi.org/10.1007/s00774-008-0861-5.

    Article  PubMed  Google Scholar 

  41. Barbour K, Zmuda J, Boudreau R, Strotmeyer E, Horwitz M, Evans R, et al. Adipokines and the risk of fracture in older adults. J. Bone Miner. Res. 2011;26:1568–76. https://doi.org/10.1002/jbmr.361.

  42. Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through foxo1. Cell Metab. 2013;17(6):901–15. https://doi.org/10.1016/j.cmet.2013.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20(2):368–75. https://doi.org/10.1016/j.cmet.2014.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Araneta MRG, von Mühlen D, Barrett-Connor E. Sex differences in the association between adiponectin and BMD, bone loss, and fractures: the Rancho Bernardo Study. J Bone Miner Res. 2009;24(12):2016–22. https://doi.org/10.1359/jbmr.090519.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Muruganandan S, Roman AA, Sinal CJ. Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J Bone Miner Res. 2010;25(2):222–34. https://doi.org/10.1359/jbmr.091106.

    Article  CAS  PubMed  Google Scholar 

  46. • Martin PJ, Haren N, Ghali O, Clabaut A, Chauveau C, Hardouin P, et al. Adipogenic RNAs are transferred in osteoblasts via bone marrow adipocytes-derived extracellular vesicles (EVs). BMC Cell Biol. 2015;16:10. This work shows, for the first time, RNA transfer between human MSC-derived adipocytes and osteoblasts through extracellular vesicles.

  47. Morris E V, Edwards CM. Bone marrow adipose tissue: a new player in cancer metastasis to bone. Front Endocrinol. (Lausanne). 2016;7:90.

  48. Wang D, Haile A, Jones LC. Dexamethasone-induced lipolysis increases the adverse effect of adipocytes on osteoblasts using cells derived from human mesenchymal stem cells. Bone. 2013;53:520–30.

  49. Gunaratnam K, Vidal C, Gimble JM, Duque G. Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology. 2014;155(1):108–16. https://doi.org/10.1210/en.2013-1712.

    Article  PubMed  Google Scholar 

  50. • Gillet C, Spruyt D, Rigutto S, Dalla Valle A, Berlier J, Louis C, et al. Oleate abrogates palmitate-induced lipotoxicity and Proinflammatory response in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Endocrinology. 2015;156(11):4081–93. This study shows that physiological concentrations of the saturated fatty acid (FA) palmitate and the monounsaturated FA oleate differently modulate cell death and function in human bone cells and proposes that FA could influence skeletal health. https://doi.org/10.1210/en.2015-1303.

    Article  CAS  PubMed  Google Scholar 

  51. Fillmore N, Huqi A, Jaswal JS, Mori J, Paulin R, Haromy A, et al. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS One. 2015;10:1–17.

    Article  Google Scholar 

  52. Oh S-R, Sul O-J, Kim Y-Y, Kim H-J, Yu R, Suh J-H, et al. Saturated fatty acids enhance osteoclast survival. J Lipid Res. 2010;51(5):892–9. https://doi.org/10.1194/jlr.M800626-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–54. https://doi.org/10.1097/00003086-197110000-00021.

    Article  CAS  PubMed  Google Scholar 

  54. Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferrán MJ. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol. 1989;17(1):34–7.

    CAS  PubMed  Google Scholar 

  55. Devlin MJ. Bone marrow composition, diabetes, and fracture risk: more bad news for saturated fat. J Bone Miner Res. 2013;28(8):1718–20. https://doi.org/10.1002/jbmr.2013.

    Article  PubMed  Google Scholar 

  56. Pino AM, Miranda M, Figueroa C, Rodriguez JP, Rosen CJ. Qualitative aspects of bone marrow adiposity in osteoporosis. Front Endocrinol (Lausanne). 2016;7:1–6.

    Google Scholar 

  57. Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2017;47:332-53.

  58. Lecka-czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia. 2017;60(7):1163–9. https://doi.org/10.1007/s00125-017-4269-4.

  59. • Yu EW, Greenblatt L, Eajazi A, Torriani M, Bredella MA. Marrow adipose tissue composition in adults with morbid obesity. Bone. 2017;97:38–42. This work demonstrates that marrow adipose tissue may serve as an imaging biomarker of skeletal health and metabolic risk in type 2 diabetic patients and adults with morbid obesity.

  60. Faje AT, Karim L, Taylor A, Lee H, Miller KK, Mendes N, et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J Clin Endocrinol Metab. 2013;98(5):1923–9. https://doi.org/10.1210/jc.2012-4153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bredella MA, Fazeli PK, Daley SM, Miller KK, Rosen CJ, Klibanski A, et al. Marrow fat composition in anorexia nervosa. Bone. 2014;66(204):199.

  62. •• Miranda M, Mar Ia Pino A, Fuenzalida K, Rosen CJ, Seitz GA, Rodr Iguez JP. Characterization of fatty acid composition in bone marrow fluid from postmenopausal women: modification after hip fracture. J Cell Biochem. 2016;117(10):2370–6. This work demonstrates that the fatty acid (FA) composition of the human bone marrow supernatant fluid is enriched in saturated FA and decreased in unsaturated FA as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. https://doi.org/10.1002/jcb.25534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shah KN, Racine J, Jones LC, Aaron RK. Pathophysiology and risk factors for osteonecrosis. Curr Rev Musculoskelet Med. 2015;8(3):201–9. https://doi.org/10.1007/s12178-015-9277-8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. •• Gillet C, Dalla Valle A, Gaspard N, Spruyt D, Vertongen P, Lechanteur J, et al. Osteonecrosis of the femoral head: lipotoxicity exacerbation in MSC and modifications of the bone marrow fluid. Endocrinology. 2017;158:490–502. This study demonstrates that the fatty acid concentration and composition are modified in the bone marrow microenvironment of osteonecrotic patients and proposes that marrow adipocytes enlargement could play a role in the pathogenesis of the disease by affecting bone remodelling.

  65. Farina E, Kiel D. Plasma phosphatidylcholine concentrations of PUFA are differentially associated with hip bone mineral density and hip fracture in older adults: the framingham osteoporosis study. J. Bone Miner. Res. 2012;27:1222–30.

  66. Orchard TS, Ing SW, Lu B, Belury MA, Johnson K, Wactawski-Wende J, et al. The association of red blood cell n-3 and n-6 fatty acids with bone mineral density and hip fracture risk in the women’s health initiative. J Bone Miner Res. 2013;28(3):505–15. https://doi.org/10.1002/jbmr.1772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paunescu AC, Ayotte P, Dewailly E, Dodin S. Saturated and monounsaturated fatty acid status is associated with bone strength estimated by calcaneal ultrasonography in Inuit women from Nunavik (Canada): a cross-sectional study. J Nutr Health Aging. 2014;18(7):663–71. https://doi.org/10.1007/s12603-014-0498-0.

    Article  CAS  PubMed  Google Scholar 

  68. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, et al. Marrow fat and bone-new perspectives. J Clin Endocrinol Metab. 2013;98(3):935–45. https://doi.org/10.1210/jc.2012-3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. •• Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol. 2015;410:35–41. This study concerns the fat and bone cross-talk and underlines the impact of factors such as genetic background, age, gender, and animal species on bone response to obesity and high fat diet. https://doi.org/10.1016/j.mce.2015.01.001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Rasschaert.

Ethics declarations

Conflict of Interest

Both authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical collection on Molecular Biology of Bone Marrow Fat Adiposity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillet, C., Rasschaert, J. Phenotype of Bone Marrow Adipose Tissue: Specificities of the Anatomical Distribution, Secretory Profile, Lipid Content, and Response to Nutritional Status. Curr Mol Bio Rep 4, 8–15 (2018). https://doi.org/10.1007/s40610-018-0086-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-018-0086-x

Keywords

Navigation