Advertisement

Quantitative uncertainty principles for the Weinstein transform

  • A. Abouelaz
  • A. Achak
  • R. Daher
  • N. Safouane
Original Article
  • 15 Downloads

Abstract

The Weinstein transform satisfies some uncertainty principles in a similar way to the Euclidean Fourier transform. Donoho–Stark’s uncertainty principle is obtained for the Weinstein transform.

Keywords

Weinstein transform Donoho–Stark’s uncertainty principle 

Mathematics Subject Classification

42A38 

References

  1. 1.
    Achak, A., Daher, R.J.: Benedicks–Amrein–Berthier type theorem related to Opdam–Cherednik transform. J. Pseudo-Differ. Oper. Appl. (2017).  https://doi.org/10.1007/s11868-017-0189-9
  2. 2.
    Achak, A., Daher, R.: Benedicks-Amrein-Berthier type theorem related to Weinstein transform. Anal. Math. 43(4), 511–521 (2017).  https://doi.org/10.1007/s10476-017-0201-x MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Achak, A., Daher, R., Lahlali, H.: Beurling’s theorem for Bessel-Struve transform. C.R. Math. 354(1), 81–85 (2016).  https://doi.org/10.1016/j.crma.2015.09.013 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benedicks, M.: On Fourier transforms of function supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106, 180–183 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beurling, A.: The Collect Works of Arne Beurling. Birkhauser, Boston (1989)zbMATHGoogle Scholar
  6. 6.
    Cowling, M.G., Price, J.F.: Generalizations of Heisenberg’s inequality. In: Mauceri, G., Ricci, F., Weiss, G. (eds.) Harmonic Analysis. Lecture Notes in Mathematics, vol. 992, pp. 443–449. Springer, Berlin (1983)CrossRefGoogle Scholar
  7. 7.
    Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ghazwani, J., Soltani, F.: A variation of the Lp uncertainty principles for the Fourier transform. In: Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, vol. 42, no. 1, pp. 10–24 (2016)Google Scholar
  10. 10.
    Hardy, G.H.: A theorem concerning Fourier transform. J. Lond. Math. Soc. 8, 227–231 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mejjaoli, H., Salhi, M.: Uncertainty principles for the Weinstein transform. Czech. Math. J. 61(136), 941–974 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Thangavelu, S.: An Introduction to the Uncertainty Principle. Progress in Mathematics, vol. 217. Birkhäuser, Basel (2004)Google Scholar

Copyright information

© Sociedad Matemática Mexicana 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Sciences Aïn ChockUniversity of Hassan IICasablancaMorocco

Personalised recommendations