Skip to main content
Log in

A general q-inverse series relation

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In the present work, we establish a general inverse series relations which unify the polynomials of Askey–Wilson, q-Racah, and q-Konhauser. The q-extensions of Riordan’s inverse series relations [Combinatorial Identities, John Wiley and Sons, Inc. 1968] are obtained by means of the main two theorems. Then we emphasize on the special cases, namely the q-Bessel function together with a q-Neumann expansion, and an inverse pair associated with the partition identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akta, R., Altin, A.: A class of multivariable polynomials associated with Humbert polynomials. Hacet J. Math. Stat. 42(4), 359–372 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Al-Salam, W.A., Verma, A.: \(q\)-Konhauser polynomials. Pac. J. Math. 108(1), 1–7 (1983)

    Article  MathSciNet  Google Scholar 

  3. Askey, R. (ed): Andrews, G. E.: Problems and Prospects for Basic Hypergeometric Functions, Theory and Applications of Special Functions. The Mathematics Research Center, The University of Wisconsin-Madison, Academic Press, New York (1975)

  4. Atakishiyeva, M.K., Yatakishiyev, N.M.: Fourier–Gauss transforms of the continuous big \(q\)-Hermite polynomials. J. Phys. A Math. Gen. 30, 559–565 (1997)

    Article  MathSciNet  Google Scholar 

  5. Carlitz, L.: Some inverse relations. Duke Math. J. 40, 893–901 (1973)

    Article  MathSciNet  Google Scholar 

  6. Dave, B.I.: A general \(q\)-inversion formula and extension of certain polynomial systems. J. Indian Math. Soc. 65(1–4), 119–126 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Dave, B.I., Dalbhide, M.: \(q\)-Analogue of an extended Jacobi polynomial and its properties. J. Indian Math. Soc. 71(1–4), 71–84 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Dave, B.I., Dalbhide, M.: Gessel-Stantons inverse series and a system of q-polynomials. Bull. Sci. math. 138, 323–334 (2014)

    Article  MathSciNet  Google Scholar 

  9. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Gessel, I., Stanton, D.: Applications of \(q\)-Lagrange inversion to basic hypergeometric series. Trans. Am. Math. Soc. 277(1), 173–201 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Gould, H.W.: A new convolution formula and and some new orthogonal relations for inversion of series. Duke Math. J. 29, 393–404 (1962)

    Article  MathSciNet  Google Scholar 

  12. Gould, H.W.: A new series transforms with applications to Bessel, Legendre and Tchebycheff polynomials. Duke Math. J. 31, 325–334 (1964)

    Article  MathSciNet  Google Scholar 

  13. Gould, H.W., Hooper, A.T.: Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 29, 51–63 (1962)

    Article  MathSciNet  Google Scholar 

  14. Gould, H.W., Hsu, L.C.: Some new inverse series relations. Duke Math. J. 40, 885–891 (1973)

    Article  MathSciNet  Google Scholar 

  15. Krattenthaler, C.: A new matrix inverse. Proc. Am. Math. Soc. 124, 47–59 (1996)

    Article  MathSciNet  Google Scholar 

  16. Lassale, M., Schlosser, M.: Inversion of the Pieri formula for Macdonald polynomials. Adv. Math. 202(2), 289–325 (2006)

    Article  MathSciNet  Google Scholar 

  17. Lavault, C.: Multiplicate inverse forms of terminating hypergeometric series. Integral Transform. Spec. Funct. 25(9), 730–749 (2014)

    Article  MathSciNet  Google Scholar 

  18. Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, New York (2008)

    Book  Google Scholar 

  19. Moak, D.S.: \(q\)-Analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81(1), 20–47 (1981)

    Article  MathSciNet  Google Scholar 

  20. Rainville, E.D.: Special Functions. Mac Millan Co., New York (1960)

    MATH  Google Scholar 

  21. Riordan, J.: An Introduction to Combinatorial Identities. Wiley, New York (1968)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is indebted to his guide Prof. J.P. Singhal for his encouragement; and thankful to Ms. Reshma T. Shah (Asst. Professor, CHARUSET, Changa), and the Research scholar Ms. Meera Chudasama for their kind assistance in LaTeXtype-setting. The author also expresses his sincere thanks to the referee(s) for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Dave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, B.I. A general q-inverse series relation. Bol. Soc. Mat. Mex. 24, 279–299 (2018). https://doi.org/10.1007/s40590-017-0172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-017-0172-8

Keywords

Mathematics Subject Classification

Navigation