Skip to main content
Log in

A measure theoretic perspective on the space of Feynman diagrams

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

The article applies Connes–Kreimer Hopf algebra of Feynman diagrams and theory of graphons to build an operational calculus machinery on the basis of measure theory for Green’s functions of quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bollobás, B.: Extremal Graph Theory. Academic Press, London (1978)

    MATH  Google Scholar 

  2. Bollobás, B.: Modern Graph Theory. Springer, New York (1998)

    Book  Google Scholar 

  3. Borgs, C., Chayes, J.T., Lovász, L.: Moments of two-variable functions and the uniqueness of graph limits. Geom. Funct. Anal. 19(6), 1597–1619 (2010)

    Article  MathSciNet  Google Scholar 

  4. Borgs, C., Chayes, J.T., Lovász, L., Sos, V.T., Vesztergombi, K.: Convergent sequences of dense graphs I. Subgraph frequencies, metric properties and testing. Adv. Math. 219(6), 1801–1851 (2008)

    Article  MathSciNet  Google Scholar 

  5. Borgs, C., Chayes, J.T., Lovász, L., Sos, V.T., Vesztergombi, K.: Convergent sequences of dense graphs II. multiway cuts and statistical physics. Ann. Math. (2) 176(1), 151–219 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bergbauer, C., Kreimer, D.: Hopf algebras in renormalization theory: locality and Dyson–Schwinger equations from Hochschild cohomology. IRMA Lect. Math. Theor. Phys. 10, 133–164 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Broadhurst, D.J., Kreimer, D.: Renormalization automated by Hopf algebra. J. Symb. Comput. 27(6), 581–600 (1999)

    Article  MathSciNet  Google Scholar 

  8. Cohn, D.L.: Measure Theory. Birkhauser, Boston (1980)

    Book  Google Scholar 

  9. Collins, J.C.: Renormalization, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  10. Cheney, E.W.: Analysis for Applied Mathematics, Series Vol. 208. Springer, New York (2001)

    Book  Google Scholar 

  11. Connes, A.: Gravity coupled with matter and the foundation of noncommutative geometry. Commun. Math. Phys. 182, 155 (1996)

    Article  Google Scholar 

  12. Connes, A.: Noncommutative geometry and the standard model with neutrino mixing. J. High Energy Phys. 2006(11), 081 (2006)

    Article  MathSciNet  Google Scholar 

  13. Chamseddine, A., Connes, A.: Universal formula for noncommutative geometry actions: unification of gravity and the standard model. Phys. Rev. Lett. 77, 486804871 (1996)

    Article  MathSciNet  Google Scholar 

  14. Chamseddine, A., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  MathSciNet  Google Scholar 

  15. Chamseddine, A., Connes, A.: Why the standard model. J. Geom. Phys. 58, 38–47 (2008)

    Article  MathSciNet  Google Scholar 

  16. Chamseddine, A., Connes, A., Marcolli, M.: Gravity and the standard model neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

    Article  MathSciNet  Google Scholar 

  17. Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199(1), 203–242 (1998)

    Article  MathSciNet  Google Scholar 

  18. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives, vol. 55. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  19. Diestel, R.: Directions in Infinite Graph Theory and Combinatorics, Topics in Discrete Mathematics 3, Elsevier, New York (1992) (ISBN 0444894144)

  20. Diao, P., Guillot, D., Khare, A., Rajaratnam, B.: Differential calculus on graphon space. J. Comb. Theory Ser. A 133, 183–227 (2015) arXiv:1403.3736v2

    Article  MathSciNet  Google Scholar 

  21. Diaconis, P., Holmes, S., Janson, S.: Interval graph limits. Ann. Comb. 17(1), 27–52 (2013)

    Article  MathSciNet  Google Scholar 

  22. Diaconis, P., Janson, S.: Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7) 28(1), 33–61 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Ebrahimi-Fard, K., Guo, L., Kreimer, D.: Integrable renormalization II: the general case. Ann. Henri Poincare 6, 369 (2005)

    Article  MathSciNet  Google Scholar 

  24. Erdos, P., Lovász, L., Spencer, J.: Strong independence of graphcopy functions. In: Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977), pp. 165–172. Academic Press, New York (1979)

  25. Feynman, R.P.: An operator calculus having applications in quantum electrodynamics. Phys. Rev. 84, 108–128 (1951)

    Article  MathSciNet  Google Scholar 

  26. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  27. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, USA (2000)

    MATH  Google Scholar 

  28. Glimm, J., Jaffe, A.: Quantum Physics. Springer, Berlin (1981)

    Book  Google Scholar 

  29. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw Hill, New York (1980)

    MATH  Google Scholar 

  30. Janson, S.: Graphons, Cut Norm and Distance, Couplings and Rearrangements, NYJM Monographs, Vol. 4 (2013)

  31. Johnson, G.W., Lapidus, M.L.: Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus, vol. 351. American Mathematical Society (1986)

  32. Jacod, J., Protter, P.: Probability Essentials, Universitext. Springer, Berlin (2004)

    Book  Google Scholar 

  33. Kane, G.: Modern Elementary Particle Physics. Addison-Wesley, Boston (1987)

    Google Scholar 

  34. Kreimer, D.: Anatomy of a gauge theory. Ann. Phys. 321, 2757–2781 (2006)

    Article  MathSciNet  Google Scholar 

  35. Kreimer, D.: Structures in Feynman graphs: Hopf algebras and symmetries. Proc. Symp. Pure Math. 73, 43–78 (2005)

    Article  MathSciNet  Google Scholar 

  36. Kreimer, D.: On overlapping divergences. Commun. Math. Phys. 204, 669 (1999)

    Article  MathSciNet  Google Scholar 

  37. Khare, A., Rajaratnam, B.: Integration and Measures on the Space of Countable Labelled Graphs. arXiv:1506.01439 [math.CA] (2015)

  38. Khare, A., Rajaratnam, B.: Differential calculus on the space of countable labelled graphs, Technical Report, Departments of Mathematics and Statistics, Stanford University (2014). arXiv:1410.6214

  39. Krajewski, T., Wulkenhaar, R.: On Kreimer’s Hopf algebra structure on Feynman graphs. Eur. Phys. J. C 7(4), 697–708 (1999)

    Article  MathSciNet  Google Scholar 

  40. Lapidus, M.L.: The Feynman–Kac formula with a Lebesgue–Stieltjes measure and Feynman’s operational calculus, I. Berkeley, II, Mathematical Sciences Research Institute (1986) (Preprint)

  41. Lovász, L.: Large Networks and Graph Limits, American Mathematical Society Colloquium Publications, vol. 60. American Mathematical Society, Providence (2012)

    Google Scholar 

  42. Lindenstrauss, J., Preiss, D.: On Fréchet differentiability of Lipschitz maps between Banach spaces. Ann. Math. 157(1), 257–288 (2003)

    Article  MathSciNet  Google Scholar 

  43. Marino, M.: Nonperturbative effects and nonperturbative definitions in matrix models and topological strings. J. High Energy Phys. 2008(12), 114 (2008)

    Article  MathSciNet  Google Scholar 

  44. Milnor, J., Moore, J.: On the structure of Hopf algebras. Ann. Math. 81, 211–264 (1965)

    Article  MathSciNet  Google Scholar 

  45. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley Publishing Company, Boston (1995)

    Google Scholar 

  46. Rao, M.M.: Measure Theory and Integration (pure and applied mathematics). Wiley, New York (1987)

    Google Scholar 

  47. Royden, H.L.: Real Analysis. MacMillan, London (1968)

    MATH  Google Scholar 

  48. Shojaei-Fard, A.: A geometric perspective on counterterms related to Dyson–Schwinger equations. Int. J. Mod. Phys. A 28(32), 1350170 (2013)

    Article  MathSciNet  Google Scholar 

  49. Shojaei-Fard, A.: The global \(\beta -\)functions from solutions of Dyson–Schwinger equations. Mod. Phys. Lett. A 28(34), 1350152 (2013)

    Article  MathSciNet  Google Scholar 

  50. Strocchi, F.: An introduction to non-perturbative foundations of quantum field theory. Int. Ser. Monogr. Phys. 158, 1–272 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Yeats, K.: Rearranging Dyson–Schwinger equations, vol. 211. American Mathematical Society, Providence (2011)

    Article  MathSciNet  Google Scholar 

  52. Weinzierl, S.: Introduction to Feynman Integrals, Geometric and Topological Methods for Quantum Field Theory, pp. 144–187. Cambridge University Press, Cambridge (2013)

  53. Zimmermann, W.: Convergence of Bogoliubov’s method of renormalization in momentum space. Commun. Math. Phys. 15, 208 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shojaei-Fard.

Additional information

Ali Shojaei-Fard is a Mathematician and Independent Scholar. He is a Former Postdoctoral Researcher at the Institute of Mathematics in University of Potsdam in Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei-Fard, A. A measure theoretic perspective on the space of Feynman diagrams. Bol. Soc. Mat. Mex. 24, 507–533 (2018). https://doi.org/10.1007/s40590-017-0166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-017-0166-6

Keywords

Mathematics Subject Classification

Navigation