Skip to main content
Log in

The Metabolism of Susceptibility: Clearing the FoG Between Tolerance and Resistance in Candida albicans

  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Failure of antifungal treatment is alarmingly common in patients infected with Candida albicans isolates that test as susceptible in vitro. This means that clinical susceptibility tests have limited predictive value for treatment success. To guide the improvement of patient outcomes, we must understand the effects of environmental and metabolic states on drug responses.

Recent Findings

Lab conditions often deviate from host environments, and current susceptibility testing standards ignore slow-growing, tolerant phenotypes; both factors may contribute to antifungal treatment failure. Metabolomic studies reveal that strain background, nutrient availability, and drug exposure influence the metabolic state of C. albicans cells; similarly, the metabolic state influences drug susceptibility.

Summary

Identifying tolerant strains in the clinic may improve patient outcomes. Studies that analyze the effects of essential but limited nutrients have the potential to improve the avoidance of persistent candidiasis and to reduce the frequency of antifungal treatment failures. Here, we highlight literature that explores the effect of drug exposure and antifungal drug resistance status on the C. albicans metabolome. Similar analyses need to be carried out relative to antifungal drug tolerance. Additionally, we focus on the biological relevance of four essential small molecules—iron, zinc, phosphate, and sphingolipids—to antifungal tolerance and resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pfaller MA, Carvalhaes CG, Smith CJ, Diekema DJ, Castanheira M. Bacterial and fungal pathogens isolated from patients with bloodstream infection: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (2012–2017). Diagn Microbiol Infect Dis. 2020;97:115016.

    Article  CAS  PubMed  Google Scholar 

  2. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-zeichner L, Kullberg BJ. Invasive Candidiasis. Nat Rev Dis Primers. 2018;4:18026.

    Article  PubMed  Google Scholar 

  3. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open Forum Infect Dis. 2019;6:S79–94.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–30.

    Article  CAS  PubMed  Google Scholar 

  5. Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Guinea J. EUCAST definitive document E.DEF 7.3.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. European Committee for Antimicrobial Susceptibility Testing; 2020.

    Google Scholar 

  6. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard—Third Edition. CLSI document M27-A3. Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  7. Pfaller MA, Diekema DJ. Progress in antifungal susceptibility testing of Candida spp. by use of clinical and laboratory standards institute broth microdilution methods, 2010 to 2012. J Clin Microbiol. 2012;50:2846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doern GV, Brecher SM. The clinical predictive value (or lack thereof) of the results of in vitro antimicrobial susceptibility tests. J Clin Microbiol. 2011;49:S11–4.

    Article  PubMed Central  Google Scholar 

  9. Luna-Tapia A, Kerns ME, Eberle KE, Jursic BS, Palmer GE. Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals. Antimicrob Agents Chemother. 2015;59:2410–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arthington-Skaggs BA, Lee-Yang W, Ciblak MA, Frade JP, Brandt ME, Hajjeh RA, Harrison LH, Sofair AN, Warnock DW, Candidemia Active Surveillance Group. Comparison of visual and spectrophotometric methods of broth microdilution MIC end point determination and evaluation of a sterol quantitation method for in vitro susceptibility testing of fluconazole and itraconazole against trailing and nontrailing Candida isolates. Antimicrob Agents Chemother. 2002;46:2477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marcos-Zambrano LJ, Escribano P, Sánchez-Carrillo C, Bouza E, Guinea J. Scope and frequency of fluconazole trailing assessed using EUCAST in invasive Candida spp. isolates. Med Mycol. 2016;54:733–9.

    Article  CAS  PubMed  Google Scholar 

  12. Delarze E, Sanglard D. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist Updat. 2015;23:12–9.

    Article  PubMed  Google Scholar 

  13. Rosenberg A, Ene IV, Bibi M, Zakin S, Segal ES, Ziv N, Dahan AM, Colombo AL, Bennett RJ, Berman J. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat Commun. 2018;9:2470.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gerstein AC, Rosenberg A, Hecht I, Berman J. diskImageR: quantification of resistance and tolerance to antimicrobial drugs using disk diffusion assays. Microbiology. 2016;162:1059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levinson T, Dahan A, Novikov A, Paran Y, Berman J, Ben-Ami R. Impact of tolerance to fluconazole on treatment response in Candida albicans bloodstream infection. Mycoses. 2021;64:78–85.

    Article  CAS  PubMed  Google Scholar 

  16. Yu SJ, Chang YL, Chen YL. Calcineurin signaling: lessons from Candida species. FEMS Yeast Res. 2015;15 https://doi.org/10.1093/femsyr/fov016.

  17. Xu Y, Lu H, Zhu S, Li W-Q, Jiang Y-Y, Berman J, Yang F. Multifactorial mechanisms of tolerance to ketoconazole in Candida albicans. Microbiol Spectr. 2021;9:e0032121.

    Article  PubMed  Google Scholar 

  18. Tsai HF, Krol AA, Sarti KE, Bennett JE. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother. 2006;50:1384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hallstrom TC, Moye-Rowley WS. Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem. 2000;275:37347–56.

    Article  CAS  PubMed  Google Scholar 

  20. Sun N, Fonzi W, Chen H, She X, Zhang L, Zhang L, Calderone R. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob Agents Chemother. 2013;57:532–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robbins N, Caplan T, Cowen LE. Molecular evolution of antifungal drug resistance. Annu Rev Microbiol. 2017;71:753–75.

    Article  CAS  PubMed  Google Scholar 

  22. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18:319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerstein AC, Berman J. Candida albicans genetic background influences mean and heterogeneity of drug responses and genome stability during evolution in fluconazole. mSphere. 2020;5:e00480–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Todd RT, Wikoff TD, Forche A, Selmecki A. Genome plasticity in Candida albicans is driven by long repeat sequences. eLife. 2019;8:e45954.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang F, Teoh F, Tan ASM, Cao Y, Pavelka N, Berman J. Aneuploidy enables cross-adaptation to unrelated drugs. Mol Biol Evol. 2019;36:1768–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janbon G, Sherman F, Rustchenko E. Monosomy of a specific chromosome determines l -sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc Natl Acad Sci U S A. 1998;95:5150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hirakawa MP, Martinez DA, Sakthikumar S, et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 2015;25:413–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ropars J, Maufrais C, Diogo D, et al. Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nat Commun. 2018;9:2253.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Selmecki A, Forche A, Berman J. Aneuploidy and Isochromosome formation in drug-resistant Candida albicans. Science. 2006;313:367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mülleder M, Calvani E, Alam MT, Wang RK, Eckerstorfer F, Zelezniak A, Ralser M. Functional metabolomics describes the yeast biosynthetic regulome. Cell. 2016;167:553–565.e12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu JSL, Correia-Melo C, Zorrilla F, et al. Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance. Nat Microbiol. 2022;7:542–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell K, Correia-Melo C, Ralser M. Self-establishing communities: a yeast model to study the physiological impact of metabolic cooperation in eukaryotic cells. Methods Mol Biol. 2019;2049:263–82.

    Article  CAS  PubMed  Google Scholar 

  33. Xiong K, Zhu H, Li Y, et al. The arginine biosynthesis pathway of Candida albicans regulates its cross-kingdom interaction with Actinomyces viscosus to promote root caries. Microbiol Spectr. 2022;10:e0078222.

    Article  PubMed  Google Scholar 

  34. Alseekh S, Aharoni A, Brotman Y, et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18:747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ. Microbial metabolomics: past, present and future methodologies. Biotechnol Lett. 2007;29:1–16.

    Article  CAS  PubMed  Google Scholar 

  36. Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA, Karu N, Djoumbou Feunang Y, Arndt D, Wishart DS. YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 2017;45:D440–5.

    Article  CAS  PubMed  Google Scholar 

  37. Singh A, Yadav V, Prasad R. Comparative lipidomics in clinical isolates of Candida albicans Reveal crosstalk between mitochondria, cell wall integrity and azole resistance. PloS One. 2012;7:e39812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iacovacci J, Peluso A, Ebbels T, Ralser M, Glen RC. Extraction and integration of genetic networks from short-profile omic data sets. Metabolites. 2020;10:E435.

    Article  Google Scholar 

  39. Machado BR, Silva PGP, Garda-Buffon J, Santos LO. Magnetic fields as inducer of glutathione and peroxidase production by Saccharomyces cerevisiae. Braz J Microbiol. 2022;53(4):1881–91. https://doi.org/10.1007/s42770-022-00836-9.

    Article  CAS  PubMed  Google Scholar 

  40. Silao FGS, Ryman K, Jiang T, Ward M, Hansmann N, Molenaar C, Liu N-N, Chen C, Ljungdahl PO. Glutamate dehydrogenase (Gdh2)-dependent alkalization is dispensable for escape from macrophages and virulence of Candida albicans. PLoS Pathog. 2020;16:e1008328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suchodolski J, Krasowska A. Fructose induces fluconazole resistance in Candida albicans through activation of Mdr1 and Cdr1 transporters. Int J Mol Sci. 2021;22:2127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams RB, Lorenz MC. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence. mBio. 2020;11:e03070–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghosh S, Navarathna DHMLP, Roberts DD, Cooper JT, Atkin AL, Petro TM, Nickerson KW. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun. 2009;77:1596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wagener J, MacCallum DM, Brown GD, Gow NAR. Candida albicans chitin increases arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions. mBio. 2017;8:e01820–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suchodolski J, Muraszko J, Bernat P, Krasowska A. Lactate like fluconazole reduces ergosterol content in the plasma membrane and synergistically kills Candida albicans. Int J Mol Sci. 2021;22:5219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garbe E, Vylkova S. Role of amino acid metabolism in the virulence of human pathogenic fungi. Curr Clin Micro Rpt. 2019;6:108–19.

    Article  Google Scholar 

  47. Oliver JC, Laghi L, Parolin C, Foschi C, Marangoni A, Liberatore A, Dias ALT, Cricca M, Vitali B. Metabolic profiling of Candida clinical isolates of different species and infection sources. Sci Rep. 2020;10:16716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li L, Liao Z, Yang Y, Lv L, Cao Y, Zhu Z. Metabolomic profiling for the identification of potential biomarkers involved in a laboratory azole resistance in Candida albicans. PloS One. 2018;13:e0192328.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gallo M, Giovati L, Magliani W, Pertinhez TA, Conti S, Ferrari E, Spisni A, Ciociola T. Metabolic plasticity of Candida albicans in Response to different environmental conditions. J Fungi. 2022;8:723.

    Article  CAS  Google Scholar 

  50. Katragkou A, Alexander EL, Eoh H, Raheem SK, Roilides E, Walsh TJ. Effects of fluconazole on the metabolomic profile of Candida albicans. J Antimicrob Chemother. 2016;71:635–40.

    Article  CAS  PubMed  Google Scholar 

  51. Katragkou A, Williams M, Sternberg S, Pantazatos D, Roilides E, Walsh TJ. Micafungin alters the amino acid, nucleic acid and central carbon metabolism of Candida albicans at subinhibitory concentrations: novel insights into mechanisms of action. J Antimicrob Chemother. 2017;72:712–6.

    CAS  PubMed  Google Scholar 

  52. Cao Y, Zhu Z, Chen X, Yao X, Zhao L, Wang H, Yan L, Wu H, Chai Y, Jiang Y. Effect of amphotericin B on the metabolic profiles of Candida albicans. J Proteome Res. 2013;12:2921–32.

    Article  CAS  PubMed  Google Scholar 

  53. Olin-Sandoval V, Yu JSL, Miller-Fleming L, et al. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature. 2019;572:249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen A, Smith JR, Tapia H, Gibney PA. Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild strains of Saccharomyces cerevisiae. G3. 2022;12:jkac196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Persson LB, Ambati VS, Brandman O. Cellular control of viscosity counters changes in temperature and energy availability. Cell. 2020;183:1572–1585.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Silao FGS, Ljungdahl PO. Amino acid sensing and assimilation by the fungal pathogen Candida albicans in the human host. Pathogens. 2021;11:5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Guo H, Xie SM, Li SX, Song YJ, Zhong XY, Zhang H. Involvement of mitochondrial aerobic respiratory activity in efflux-mediated resistance of C. albicans to fluconazole. J Mycol Med. 2017;27:339–44.

    Article  CAS  PubMed  Google Scholar 

  58. Almeida RS, Wilson D, Hube B. Candida albicans iron acquisition within the host. FEMS Yeast Res. 2009;9:1000–12.

    Article  CAS  PubMed  Google Scholar 

  59. Fourie R, Kuloyo OO, Mochochoko BM, Albertyn J, Pohl CH. Iron at the centre of Candida albicans Interactions. Front Cell Infect Microbiol. 2018;8:185.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Noble SM. Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol. 2013;16:708–15.

    Article  CAS  PubMed  Google Scholar 

  61. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cassat JE, Skaar EP. Iron in Infection and Immunity. Cell Host Microbe. 2013;13:509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prasad T, Chandra A, Mukhopadhyay CK, Prasad R. Unexpected link between iron and drug resistance of candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptiblecells. Antimicrob Agents Chemother. 2006;50:3597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, Dungan J, Newport G, Agabian N. Regulatory networks affected by iron availability in Candida albicans: iron regulation in C. albicans. Mol Microbiol. 2004;53:1451–69.

    Article  CAS  PubMed  Google Scholar 

  65. Savage KA, Parquet MDC, Allan DS, Davidson RJ, Holbein BE, Lilly EA, Fidel PL. Iron Restriction to clinical isolates of Candida albicans by the novel chelator DIBI Inhibits growth and increases sensitivity to azoles in vitro and in vivo in a murine model of experimental vaginitis. Antimicrob Agents Chemother. 2018;62:e02576–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. Calcineurin in fungal virulence and drug resistance: prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence. 2017;8:186–97.

    Article  CAS  PubMed  Google Scholar 

  67. Bader T, Schröppel K, Bentink S, Agabian N, Köhler G, Morschhäuser J. Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun. 2006;74:4366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. Attenuation of the activity of caspofungin at high concentrations against candida albicans : possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother. 2005;49:5146–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hameed S, Dhamgaye S, Singh A, Goswami SK, Prasad R. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans. PloS One. 2011;6:e18684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramírez-Zavala B, Krüger I, Dunker C, Jacobsen ID, Morschhäuser J. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans. PLoS Pathog. 2022;18:e1010283.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sircaik S, Román E, Bapat P, Lee KK, Andes DR, Gow NAR, Nobile CJ, Pla J, Panwar SL. The protein kinase Ire1 impacts pathogenicity of Candida albicans by regulating homeostatic adaptation to endoplasmic reticulum stress. Cell Microbiol. 2021;23:e13307. https://doi.org/10.1111/cmi.13307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jung K-W, So Y-S, Bahn Y-S. Unique roles of the unfolded protein response pathway in fungal development and differentiation. Sci Rep. 2016;6:33413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blankenship JR, Fanning S, Hamaker JJ, Mitchell AP. An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog. 2010;6:e1000752.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Richie DL, Hartl L, Aimanianda V, et al. A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog. 2009;5:e1000258.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Weichert M, Guirao-Abad J, Aimanianda V, et al. Functional coupling between the unfolded protein response and endoplasmic reticulum/golgi Ca 2+ -ATPases promotes stress tolerance, cell wall biosynthesis, and virulence of Aspergillus fumigatus. mBio. 2020;11:e01060–20.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cohen N, Breker M, Bakunts A, et al. Iron affects Ire1 clustering propensity and the amplitude of endoplasmic reticulum stress signaling. J Cell Sci. 2017;130:3222–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bonilla M, Nastase KN, Cunningham KW. Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J. 2002;21:2343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Peng L, Du J, Zhang R, Zhu N, Zhao H, Zhao Q, Yu Q, Li M. The transient receptor potential channel Yvc1 deletion recovers the growth defect of calcineurin mutant under endoplasmic reticulum stress in Candida albicans. Front Microbiol. 2021;12:752670.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Thomas E, Sircaik S, Roman E, Brunel J-M, Johri AK, Pla J, Panwar SL. The activity of RTA2, a downstream effector of the calcineurin pathway, is required during tunicamycin-induced ER stress response in Candida albicans. FEMS Yeast Res. 2015;15:fov095.

    Article  PubMed  Google Scholar 

  80. Hunsaker EW, Franz KJ. Candida albicans reprioritizes metal handling during fluconazole stress. Metallomics. 2019;11:2020–32.

    Article  CAS  PubMed  Google Scholar 

  81. Homann OR, Dea J, Noble SM, Johnson AD. A phenotypic profile of the Candida albicans regulatory network. PLoS Genet. 2009;5:e1000783.

    Article  PubMed  PubMed Central  Google Scholar 

  82. MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev. 2006;70:583–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, Eide DJ. Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J Cell Biol. 2004;166:325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Malavia D, Lehtovirta-Morley LE, Alamir O, Weiß E, Gow NAR, Hube B, Wilson D. Zinc limitation induces a hyper-adherent goliath phenotype in Candida albicans. Front Microbiol. 2017;8:2238.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Walker LA, Gow NAR, Munro CA. Elevated chitin content reduces the susceptibility of candida species to caspofungin. Antimicrob Agents Chemother. 2013;57:146–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfaller M, Riley J. Effects of fluconazole on the sterol and carbohydrate composition of four species of Candida. Eur J Clin Microbiol Infect Dis. 1992;11:152–6.

    Article  CAS  PubMed  Google Scholar 

  87. Shahi G, Kumar M, Skwarecki AS, Edmondson M, Banerjee A, Usher J, Gow NAR, Milewski S, Prasad R. Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. The Cell Surface. 2022;8:100076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nett JE, Sanchez H, Cain MT, Andes DR. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis. 2010;202:171–5.

    Article  CAS  PubMed  Google Scholar 

  89. Zarnowski R, Sanchez H, Jaromin A, Zarnowska UJ, Nett JE, Mitchell AP, Andes D. A common vesicle proteome drives fungal biofilm development. Proc Natl Acad Sci U S A. 2022;119:e2211424119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Avraham N, Soifer I, Carmi M, Barkai N. Increasing population growth by asymmetric segregation of a limiting resource during cell division. Mol Syst Biol. 2013;9:656.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gaspar-Cordeiro A, Amaral C, Pobre V, Antunes W, Petronilho A, Paixão P, Matos AP, Pimentel C. Copper acts synergistically with fluconazole in Candida glabrata by compromising drug efflux, sterol metabolism, and zinc homeostasis. Front Microbiol. 2022;13:920574.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lyons TJ, Gasch AP, Gaither LA, Botstein D, Brown PO, Eide DJ. Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc Natl Acad Sci U S A. 2000;97:7957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Köhler JR, Acosta-Zaldívar M, Qi W. Phosphate in virulence of Candida albicans and Candida glabrata. J Fungi. 2020;6:E40.

    Article  Google Scholar 

  94. Hatakeyama R. Pib2 as an Emerging master regulator of yeast TORC1. Biomolecules. 2021;11:1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bertels L-K, Fernández Murillo L, Heinisch JJ. The pentose phosphate pathway in yeasts-more than a poor cousin of glycolysis. Biomolecules. 2021;11:725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Plank M. Interaction of TOR and PKA Signaling in S. cerevisiae. Biomolecules. 2022;12:210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Michigami T, Yamazaki M, Razzaque MS. Extracellular phosphate, inflammation and cytotoxicity. Adv Exp Med Biol. 2022;1362:15–25.

    Article  PubMed  Google Scholar 

  98. Scalise M, Galluccio M, Pochini L, Cosco J, Trotta M, Rebsamen M, Superti-Furga G, Indiveri C. Insights into the transport side of the human SLC38A9 transceptor. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2019;1861:1558–67.

    Article  CAS  PubMed  Google Scholar 

  99. Steyfkens F, Zhang Z, Van Zeebroeck G, Thevelein JM. Multiple Transceptors for macro- and micro-nutrients control diverse cellular properties through the PKA pathway in yeast: a paradigm for the rapidly expanding world of eukaryotic nutrient transceptors up to those in human cells. Front Pharmacol. 2018;9:191.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu N-N, Acosta-Zaldívar M, Qi W, et al. Phosphoric metabolites link phosphate import and polysaccharide biosynthesis for Candida albicans cell wall maintenance. mBio. 2020;11:e03225–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu N-N, Flanagan PR, Zeng J, Jani NM, Cardenas ME, Moran GP, Köhler JR. Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A. 2017;114:6346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu N-N, Uppuluri P, Broggi A, et al. Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog. 2018;14:e1007076.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sun Y, Tan L, Yao Z, Gao L, Yang J, Zeng T. In vitro and in vivo interactions of TOR inhibitor AZD8055 and azoles against pathogenic fungi. Microbiol Spectr. 2022;10:e0200721.

    Article  PubMed  Google Scholar 

  104. Morozumi Y, Shiozaki K. Conserved and divergent mechanisms that control TORC1 in yeasts and mammals. Genes. 2021;12:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lebesgue N, Megyeri M, Cristobal A, et al. Combining deep sequencing, proteomics, phosphoproteomics, and functional screens to discover novel regulators of sphingolipid homeostasis. J Proteome Res. 2017;16:571–82.

    Article  CAS  PubMed  Google Scholar 

  106. Gao J, Wang H, Li Z, et al. Candida albicans gains azole resistance by altering sphingolipid composition. Nat Commun. 2018;9:4495.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Walker BR, Moraes CT. Nuclear-mitochondrial interactions. Biomolecules. 2022;12:427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jazwinski SM. Chapter Five - The retrograde response: a conserved compensatory reaction to damage from within and from without. In: Osiewacz HD, editor. Progress in Molecular Biology and Translational Science. Academic Press; 2014. p. 133–54.

    Google Scholar 

  109. Moreno-Velásquez SD, Tint SH, Toledo VDO, Torsin S, De S, Pérez JC. The Regulatory proteins Rtg1/3 govern sphingolipid homeostasis in the human-associated yeast Candida albicans. Cell Rep. 2020;30:620–629.e6.

    Article  PubMed  Google Scholar 

  110. Garbe E, Gerwien F, Driesch D, Müller T, Böttcher B, Gräler M, Vylkova S. Systematic metabolic profiling identifies de novo sphingolipid synthesis as hypha associated and essential for Candida albicans filamentation. mSystems. 2022;7:e00539.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vandenbosch D, Bink A, Govaert G, Cammue BPA, Nelis HJ, Thevissen K, Coenye T. Phytosphingosine-1-phosphate is a signaling molecule involved in miconazole resistance in sessile Candida albicans cells. Antimicrob Agents Chemother. 2012;56:2290–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rollin-Pinheiro R, Bayona-Pacheco B, Domingos LTS, da Rocha Curvelo JA, de Castro GMM, Barreto-Bergter E, Ferreira-Pereira A. Sphingolipid inhibitors as an alternative to treat candidiasis caused by fluconazole-resistant strains. Pathogens. 2021;10:856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Revie NM, Iyer KR, Maxson ME, et al. Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nat Commun. 2022;13:3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim HS, Fay JC. Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proc Natl Acad Sci U S A. 2007;104:19387–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Druseikis M, Ben-Ari J, Covo S. The Goldilocks effect of respiration on canavanine tolerance in Saccharomyces cerevisiae. Curr Genet. 2019;65:1199–215.

    Article  CAS  PubMed  Google Scholar 

  116. Vella A, De Carolis E, Mello E, Perlin DS, Sanglard D, Sanguinetti M, Posteraro B. Potential use of MALDI-ToF mass spectrometry for rapid detection of antifungal resistance in the human pathogen Candida glabrata. Sci Rep. 2017;7:9099.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Arastehfar A, Daneshnia F, Hafez A, et al. Antifungal susceptibility, genotyping, resistance mechanism, and clinical profile of Candida tropicalis blood isolates. Med Mycol. 2020;58:766–73.

    Article  CAS  PubMed  Google Scholar 

  118. Arastehfar A, Daneshnia F, Najafzadeh MJ, et al. evaluation of molecular epidemiology, clinical characteristics, antifungal susceptibility profiles, and molecular mechanisms of antifungal resistance of Iranian Candida parapsilosis species complex blood isolates. Front Cell Infect Microbiol. 2020;10:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 951475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Berman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druseikis, M., Mottola, A. & Berman, J. The Metabolism of Susceptibility: Clearing the FoG Between Tolerance and Resistance in Candida albicans. Curr Clin Micro Rpt 10, 36–46 (2023). https://doi.org/10.1007/s40588-023-00189-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-023-00189-3

Keywords

Navigation