Current Clinical Microbiology Reports

, Volume 5, Issue 1, pp 26–37 | Cite as

Flavobacteria, a Never Ending Threat for Fish: a Review

Bacteriology (N Borel, Section Editor)
  • 28 Downloads
Part of the following topical collections:
  1. Topical Collection on Bacteriology

Abstract

Purpose of Review

In this review, we summarized the most recent findings on the partial and full genome and the phylogenetic structure of genomovars, as well as on virulence factors, vaccine development, and treatment methods of the two fish pathogenic bacteria Flavobacterium psychrophilum and F. columnare. Both species have a widespread distribution and are the causative agents of devastating diseases of both farmed and wild fish. For minimizing the impact of these infections, knowledge on biology and epidemiology of these pathogens is essential.

Recent Findings

Recent investigations have demonstrated a wide variability with regard to strains and genotypes. For both pathogens, new host species and geographic areas have been identified. For some isolates, a certain degree of host specificity could be demonstrated. Attempts have been undertaken to standardize methods for testing bacteria for resistance to antibiotics. Further, newly developed vaccines and a number of new treatment methods yielded promising results, but fully convincing and generally accepted prophylactic or therapeutic methods are not yet available.

Summary

In summary, despite intense research in the two species and considerable increase in understanding the host-pathogen relationship, there is still no generally applicable method to reduce the devastating effect of these bacteria species on farmed and wild fish populations.

Keywords

Flavobacterium psychrophilum Flavobacterium columnare Genetics Virulence factors Prevention Treatment 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Nematollahi A, Decostere A, Pasmans F, Haesebrouck F. Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis. 2003;26(10):563–74.  https://doi.org/10.1046/j.1365-2761.2003.00488.x.PubMedGoogle Scholar
  2. 2.
    Starliper CE. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res. 2011;2(2):97–108.  https://doi.org/10.1016/j.jare.2010.04.001.Google Scholar
  3. 3.
    Holt RA, Bertolini J, Cain K, Long A. 1.2. 2 Coldwater disease. AFS Fish Health Section Blue Book. 2012.Google Scholar
  4. 4.
    Shotts Jr E, Starliper C. Flavobacterial diseases: columnaris disease, cold-water disease and bacterial gill disease. In: AGRIS, editor. CABI international; 1999.Google Scholar
  5. 5.
    Wakabayashi H, Huh G, Kimura N. Flavobacterium branchiophila sp. nov., a causative agent of bacterial gill disease of freshwater fishes. Int J Syst Evol Microbiol. 1989;39(3):213–6.  https://doi.org/10.1099/00207713-39-3-213.Google Scholar
  6. 6.
    Starliper CE. 1.2. 1 Bacterial gill disease. AFS Fish Health Section Blue Book. 2012.Google Scholar
  7. 7.
    Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A. Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res. 2013;44(1):27.  https://doi.org/10.1186/1297-9716-44-27.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Christensen PJ. The history, biology, and taxonomy of the Cytophaga group. Can J Microbiol. 1977;23(12):1599–653.  https://doi.org/10.1139/m77-236.PubMedGoogle Scholar
  9. 9.
    Anderson RL, Ordal EJ. Cytophaga succinicans sp. n., a facultatively anaerobic, aquatic myxobacterium. J Bacteriol. 1961;81(1):130.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Strohl WR, Tait LR. Cytophaga aquatilis sp. nov., a facultative anaerobe isolated from the gills of freshwater fish. Int J Syst Evol Microbiol. 1978;28(2):293–303.  https://doi.org/10.1099/00207713-28-2-293.Google Scholar
  11. 11.
    • Loch TP, Faisal M. Emerging flavobacterial infections in fish: a review. J Adv Res. 2015;6(3):283–300.  https://doi.org/10.1016/j.jare.2014.10.009. The publication gives a thorough overview on Flavobacterium species involved in fish diseases.PubMedGoogle Scholar
  12. 12.
    Bernardet J-F, Bowman JP. The genus Flavobacterium. In: The prokaryotes. Berlin: Springer; 2006. p. 481–531.Google Scholar
  13. 13.
    Kämpfer P, Lodders N, Martin K, Avendaño-Herrera R. Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol. 2012;62(6):1402–8.  https://doi.org/10.1099/ijs.0.033431-0.PubMedGoogle Scholar
  14. 14.
    Loch TP, Faisal M. Flavobacterium spartansii sp. nov., a pathogen of fishes, and emended descriptions of Flavobacterium aquidurense and Flavobacterium araucananum. Int J Syst Evol Microbiol. 2014;64(2):406–12.  https://doi.org/10.1099/ijs.0.051433-0.PubMedGoogle Scholar
  15. 15.
    Loch TP, Fujimoto M, Woodiga SA, Walker ED, Marsh TL, Faisal M. Diversity of fish-associated Flavobacteria of Michigan. J Aquat Anim Health. 2013;25(3):149–64.  https://doi.org/10.1080/08997659.2012.758189.PubMedGoogle Scholar
  16. 16.
    Wagner BA, Wise DJ, Khoo LH, Terhune JS. The epidemiology of bacterial diseases in food-size channel catfish. J Aquat Anim Health. 2002;14(4):263–72.  https://doi.org/10.1577/1548-8667(2002)014<0263:TEOBDI>2.0.CO;2.PubMedGoogle Scholar
  17. 17.
    Siekoula-Nguedia C, Blanc G, Duchaud E, Calvez S. Genetic diversity of Flavobacterium psychrophilum isolated from rainbow trout in France: predominance of a clonal complex. Vet Microbiol. 2012;161(1):169–78.  https://doi.org/10.1016/j.vetmic.2012.07.022.PubMedGoogle Scholar
  18. 18.
    Strepparava N, Nicolas P, Wahli T, Segner H, Petrini O. Molecular epidemiology of Flavobacterium psychrophilum from Swiss fish farms. Dis Aquat Org. 2013;105(3):203–10.  https://doi.org/10.3354/dao02609.PubMedGoogle Scholar
  19. 19.
    • Nilsen H, Sundell K, Duchaud E, Nicolas P, Dalsgaard I, Madsen L, et al. Multilocus sequence typing (MLST) identifies epidemic clones of Flavobacterium psychrophilum in Nordic countries. Appl Environ Microbiol. 2014;AEM. 04233–13.  https://doi.org/10.1128/AEM.04233-13. The publication provides the most complete overview on the different sequence types of F. psychrophilum in North European countries.
  20. 20.
    Avendaño-Herrera R, Houel A, Irgang R, Bernardet J-F, Godoy M, Nicolas P, et al. Introduction, expansion and coexistence of epidemic Flavobacterium psychrophilum lineages in Chilean fish farms. Vet Microbiol. 2014;170(3):298–306.  https://doi.org/10.1016/j.vetmic.2014.02.009.PubMedGoogle Scholar
  21. 21.
    Apablaza P, Løland A, Brevik Ø, Ilardi P, Battaglia J, Nylund A. Genetic variation among Flavobacterium psychrophilum isolates from wild and farmed salmonids in Norway and Chile. J Appl Microbiol. 2013;114(4):934–46.  https://doi.org/10.1111/jam.12121.PubMedGoogle Scholar
  22. 22.
    • Van Vliet DM. Investigation of the heterogeneity among Flavobacterium psychrophilum strains devastating salmonid stocks in the laurentian Great Lakes basin: Michigan State University; 2016. The publication provides an overview on the different sequence types of F. psychrophilum in North America.Google Scholar
  23. 23.
    Fujiwara-Nagata E, Chantry-Darmon C, Bernardet J-F, Eguchi M, Duchaud E, Nicolas P. Population structure of the fish pathogen Flavobacterium psychrophilum at whole-country and model river levels in Japan. Vet Res. 2013;44(1):34.  https://doi.org/10.1186/1297-9716-44-34.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Van Vliet D, Wiens GD, Loch TP, Nicolas P, Faisal M. Genetic diversity of Flavobacterium psychrophilum isolates from three Oncorhynchus spp. in the United States, as revealed by multilocus sequence typing. Appl Environ Microbiol. 2016;82(11):3246–55.  https://doi.org/10.1128/AEM.00411-16.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ngo TP, Bartie KL, Thompson KD, Verner-Jeffreys DW, Hoare R, Adams A. Genetic and serological diversity of Flavobacterium psychrophilum isolates from salmonids in United Kingdom. Vet Microbiol. 2017;201:216–24.  https://doi.org/10.1016/j.vetmic.2017.01.032.PubMedGoogle Scholar
  26. 26.
    Shimizu M, Goda H, Yamasaki K, Oshima S-i, Ohnishi K, Osaki Y, et al. Draft genome sequence of Flavobacterium psychrophilum strain KTEN-1510 with genotype A/GC, isolated from an ayu (Plecoglossus altivelis altivelis) in the Kagami River, Kochi, Japan. Genome Announc. 2016;4(1):e01762–15.  https://doi.org/10.1128/genomeA.01762-15.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Neiger R, Thomas M, Das S, Barnes M, Fletcher B, Snekvik K, et al. Draft genome sequences of three Flavobacterium psychrophilum strains isolated from coldwater disease outbreaks at three production hatcheries. Genome Announc. 2016;4(2):e00035–16.  https://doi.org/10.1128/genomeA.00035-16.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Rochat T, Barbier P, Nicolas P, Loux V, Pérez-Pascual D, Guijarro JA, et al. Complete genome sequence of Flavobacterium psychrophilum strain OSU THCO2-90, used for functional genetic analysis. Genome Announc. 2017;5(8):e01665–16.  https://doi.org/10.1128/genomeA.01665-16.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Rochat T, Fujiwara-Nagata E, Calvez S, Dalsgaard I, Madsen L, Calteau A, Lunazzi A, Nicolas P, Wiklund T, Bernardet JF, Duchaud E Genomic characterization of Flavobacterium psychrophilum serotypes and development of a multiplex PCR-based serotyping scheme. Front Microbiol. 2017;8.  https://doi.org/10.3389/fmicb.2017.01752.
  30. 30.
    Imajoh M, Tsuji Y, Yamashita H, Ohgi M, Monno S, Ohnishi K, et al. Draft genome sequence of Flavobacterium psychrophilum strain SSADA-1411, isolated from an ayu (Plecoglossus altivelis altivelis) migrating downriver to spawn in the Shimanto River, Kochi, Japan. Genome Announc. 2017;5(31):e00735–17.  https://doi.org/10.1128/genomeA.00735-17 PubMedPubMedCentralGoogle Scholar
  31. 31.
    LaFrentz BR, Waldbieser G, Welch T, Shoemaker C. Intragenomic heterogeneity in the 16S rRNA genes of Flavobacterium columnare and standard protocol for genomovar assignment. J Fish Dis. 2014;37(7):657–69.  https://doi.org/10.1111/jfd.12166.PubMedGoogle Scholar
  32. 32.
    • Lafrentz B, Garcia J, Dong H, Waldbieser G, Rodkhum C, Wong F, et al. Optimized reverse primer for 16S–RFLP analysis and genomovar assignment of Flavobacterium columnare. J Fish Dis. 2017;40(8):1103–8.  https://doi.org/10.1111/jfd.12583. The publication describes a method which allows to assign the so far detected F. columnare isolates to genomovars, which is of particular importance for epidemiological studies.PubMedGoogle Scholar
  33. 33.
    Faisal M, Diamanka A, Loch T, LaFrentz B, Winters A, García J, et al. Isolation and characterization of Flavobacterium columnare strains infecting fishes inhabiting the Laurentian Great Lakes basin. J Fish Dis. 2017;40(5):637–48.  https://doi.org/10.1111/jfd.12548.PubMedGoogle Scholar
  34. 34.
    Barony G, Tavares G, Assis G, Luz R, Figueiredo H, Leal C. New hosts and genetic diversity of Flavobacterium columnare isolated from Brazilian native species and Nile tilapia. Dis Aquat Org. 2015;117(1):1–11.  https://doi.org/10.3354/dao02931.PubMedGoogle Scholar
  35. 35.
    Evenhuis JP, Mohammed H, LaPatra SE, Welch TJ, Arias CR. Virulence and molecular variation of Flavobacterium columnare affecting rainbow trout in Idaho, USA. Aquaculture. 2016;464:106–10.  https://doi.org/10.1016/j.aquaculture.2016.06.017.Google Scholar
  36. 36.
    Bartelme RP, Newton RJ, Zhu Y, Li N, LaFrentz BR, McBride MJ. Complete genome sequence of the fish pathogen Flavobacterium columnare strain C# 2. Genome Announc. 2016;4(3):e00624–16.  https://doi.org/10.1128/genomeA.00624-16.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Evenhuis JP, LaPatra SE, Graf J. Draft genome sequence of the fish pathogen Flavobacterium columnare strain CSF-298-10. Genome Announc. 2017;5(15):e00173–17.  https://doi.org/10.1128/genomeA.00173-17.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kumru S, Tekedar HC, Waldbieser GC, Karsi A, Lawrence ML. Genome sequence of the fish pathogen Flavobacterium columnare genomovar II strain 94-081. Genome Announc. 2016;4(3):e00430–16.  https://doi.org/10.1128/genomeA.00430-16.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kumru S, Tekedar HC, Gulsoy N, Waldbieser GC, Lawrence ML, Karsi A. Comparative analysis of the Flavobacterium columnare genomovar I and II genomes. Front Microbiol. 2017;8:1375.  https://doi.org/10.3389/fmicb.2017.01375.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Tekedar HC, Karsi A, Gillaspy AF, Dyer DW, Benton NR, Zaitshik J, et al. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J Bacteriol. 2012;194(10):2763–4.  https://doi.org/10.1128/JB.00281-12.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang Y, Nie P, Lin L. Complete genome sequence of the fish pathogen Flavobacterium columnare Pf1. Genome Announc. 2016;4(5):e00900–16.  https://doi.org/10.1128/genomeA.00900-16.PubMedPubMedCentralGoogle Scholar
  42. 42.
    • Kayansamruaj P, Dong HT, Hirono I, Kondo H, Senapin S, Rodkhum C. Comparative genome analysis of fish pathogen Flavobacterium columnare reveals extensive sequence diversity within the species. Infection, Genetics and Evolution. 2017.  https://doi.org/10.1016/j.meegid.2017.06.012. The publication gives a comprehensive summary on diversity and similarities between F. columnare isolates worldwide.
  43. 43.
    Tekedar HC, Karsi A, Reddy JS, Nho SW, Kalindamar S, Lawrence ML. Comparative genomics and transcriptional analysis of Flavobacterium columnare strain ATCC 49512. Front Microbiol. 2017;8.  https://doi.org/10.3389/fmicb.2017.00588.
  44. 44.
    Lawrence ML, Karsi A, Tekedar HC, Banes MM, Gibbs D. Comparative genomics and transcriptomics of Flavobacterium columnare isolates from genomovars I and II. 2012.Google Scholar
  45. 45.
    Castillo D, Christiansen RH, Dalsgaard I, Madsen L, Espejo R, Middelboe M. Comparative genome analysis provides insights into the pathogenicity of Flavobacterium psychrophilum. PLoS One. 2016;11(4):e0152515.  https://doi.org/10.1371/journal.pone.0152515.PubMedPubMedCentralGoogle Scholar
  46. 46.
    • Zhang Y, Zhao L, Chen W, Huang Y, Yang L, Sarathbabu V, et al. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes. Microb Pathog. 2017;111:203–11.  https://doi.org/10.1016/j.micpath.2017.08.035. Information on the gene-based interactions between the fish host and the pathogen F. columnare are provided.PubMedGoogle Scholar
  47. 47.
    Li N, Zhu Y, LaFrentz BR, Evenhuis JP, Hunnicutt DW, Conrad RA, et al. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare. Appl Environ Microbiol. 2017;AEM. 01769–17.  https://doi.org/10.1128/AEM.01769-17.
  48. 48.
    Penttinen R. Genetic and environmental factors associated with the virulence of fish pathogen Flavobacterium columnare. Jyväskylä studies in biological and environmental. Science. 2016;316.Google Scholar
  49. 49.
    Li N, Qin T, Zhang XL, Huang B, Liu ZX, Xie HX, et al. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence. Appl Environ Microbiol. 2015;81(21):7394–402.  https://doi.org/10.1128/AEM.01586-15.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Li N, Qin T, Zhang XL, Huang B, Liu ZX, Xie HX, et al. Development and use of a gene deletion strategy to examine the two chondroitin lyases in virulence of Flavobacterium columnare. Appl Environ Microbiol. 2015;AEM. 01586–15.  https://doi.org/10.1128/AEM.01586-15.
  51. 51.
    Zhang X, Li N, Qin T, Huang B, Nie P. Involvement of two glycoside hydrolase family 19 members in colony morphotype and virulence in Flavobacterium columnare. Chin J Oceanol Limnol. 2016;1–13.  https://doi.org/10.1007/s00343-017-6160-z.
  52. 52.
    Moreno P, Molinari L, Hualde P, Miyazaki T. First report of Flavobacterium psychrophilum isolated from cultured rainbow trout (Oncorhynchus mykiss) in Argentina. Bull Eur Ass Fish Pathol. 2016;36(2):59.Google Scholar
  53. 53.
    Castillo Y, Ortega C, Fajardo R, Martíñez-Castaneda S, Valladares B, Irgang R, et al. First isolation and characterisation of Flavobacterium psychrophilum from diseased rainbow trout (Oncorhynchus mykiss) farmed in Mexico. Bull Eur Assoc Fish Pathol. 2017;37(1):23–30.Google Scholar
  54. 54.
    Verma DK, Rathore G. Molecular characterization of Flavobacterium columnare isolated from a natural outbreak of columnaris disease in farmed fish, Catla catla from India. J Gen Appl Microbiol. 2013;59(6):417–24.  https://doi.org/10.2323/jgam.59.417.PubMedGoogle Scholar
  55. 55.
    Dong H, LaFrentz B, Pirarat N, Rodkhum C. Phenotypic characterization and genetic diversity of Flavobacterium columnare isolated from red tilapia, Oreochromis sp., in Thailand. J Fish Dis. 2015;38(10):901–13.  https://doi.org/10.1111/jfd.12304.Google Scholar
  56. 56.
    Sudheesh PS, Cain KD. Optimization of efficacy of a live attenuated Flavobacterium psychrophilum immersion vaccine. Fish Shellfish Immunol. 2016;56:169–80.  https://doi.org/10.1016/j.fsi.2016.07.004.PubMedGoogle Scholar
  57. 57.
    Sudheesh P, Zimmerman J, Cain K. Dietary effects on immunity, stress, and efficacy of two live attenuated Flavobacterium psychrophilum vaccine formulations. Aquaculture. 2016;454:35–43.  https://doi.org/10.1016/j.aquaculture.2015.12.004.Google Scholar
  58. 58.
    Hoare R, Ngo TP, Bartie K, Adams A. Efficacy of a polyvalent immersion vaccine against Flavobacterium psychrophilum and evaluation of immune response to vaccination in rainbow trout fry (Onchorynchus mykiss L.). Vet Res. 2017;48(1):43.  https://doi.org/10.1186/s13567-017-0448-z.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ghosh B, Cain K, Nowak B, Bridle A. Microencapsulation of a putative probiotic Enterobacter species, C6-6, to protect rainbow trout, Oncorhynchus mykiss (Walbaum), against bacterial coldwater disease. J Fish Dis. 2016;39(1):1–11.  https://doi.org/10.1111/jfd.12311.PubMedGoogle Scholar
  60. 60.
    Nakayama H, Mori M, Takita T, Yasukawa K, Tanaka K, Hattori S, et al. Development of immersion vaccine for bacterial cold-water disease in ayu Plecoglossus altivelis. Biosci Biotechnol Biochem. 2017;81(3):608–13.  https://doi.org/10.1080/09168451.2016.1268041.PubMedGoogle Scholar
  61. 61.
    Kato G, Sakai T, Suzuki K, Sano N, Takano T, Matsuyama T, et al. Protective efficacies and immune responses induced by recombinant HCD, atpD and gdhA against bacterial cold-water disease in ayu (Plecoglossus altivelis). Fish Shellfish Immunol. 2014;39(2):396–400.  https://doi.org/10.1016/j.fsi.2014.05.040.PubMedGoogle Scholar
  62. 62.
    Plant KP, LaPatra SE, Call DR, Cain KD. Attempts at validating a recombinant Flavobacterium psychrophilum gliding motility protein N as a vaccine candidate in rainbow trout, Oncorhynchus mykiss (Walbaum) against bacterial cold-water disease. FEMS Microbiol Lett. 2014;358(1):14–20.  https://doi.org/10.1111/1574-6968.12543.PubMedGoogle Scholar
  63. 63.
    • Gómez E, Méndez J, Cascales D, Guijarro JA. Flavobacterium psychrophilum vaccine development: a difficult task. Microb Biotechnol. 2014;7(5):414–23.  https://doi.org/10.1111/1751-7915.12099. The paper exemplifies the various difficulties when developing an effective, ecologically and economically acceptable vaccine.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhu W, Yang G, Zhang Y, Yuan J, An L. Generation of biotechnology-derived Flavobacterium columnare ghosts by PhiX174 gene E-mediated inactivation and the potential as vaccine candidates against infection in grass carp. Biomed Res Int. 2012;2012.  https://doi.org/10.1155/2012/760730.
  65. 65.
    Luo Z, Fu J, Li N, Liu Z, Qin T, Zhang X, et al. Immunogenic proteins and their vaccine development potential evaluation in outer membrane proteins (OMPs) of Flavobacterium columnare. Aquacult Fish. 2016;1:1–8.  https://doi.org/10.1016/j.aaf.2016.10.002.Google Scholar
  66. 66.
    Luo Z, Liu Z, Fu J, Zhang Q, Huang B, Nie P. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella. Chin J Oceanol Limnol. 2016;34(6):1247–57.  https://doi.org/10.1007/s00343-016-5096-z.Google Scholar
  67. 67.
    Liu Z, Liu G, Li N, Xiao F, Xie H, Nie P. Identification of immunogenic proteins of Flavobacterium columnare by two-dimensional electrophoresis immunoblotting with antibacterial sera from grass carp, Ctenopharyngodon idella (Valenciennes). J Fish Dis. 2012;35(4):255–63.  https://doi.org/10.1111/j.1365-2761.2011.01340.x.PubMedGoogle Scholar
  68. 68.
    Kumagai A. Bacterial cold-water disease in salmonid fish and ayu. Fish Pathol. 2016;51(4):153–7.  https://doi.org/10.3147/jsfp.51.153.Google Scholar
  69. 69.
    Oplinger RW, Wagner EJ. Use of penicillin and streptomycin to reduce spread of bacterial coldwater disease I: Antibiotics in sperm extenders. J Aquat Anim Health. 2015;27(1):25–31.  https://doi.org/10.1080/08997659.2014.966211.PubMedGoogle Scholar
  70. 70.
    Oplinger RW, Wagner EJ, Cavender W. Use of penicillin and streptomycin to reduce spread of bacterial coldwater disease II: Efficacy of using antibiotics in diluents and during water hardening. J Aquat Anim Health. 2015;27(1):32–7.  https://doi.org/10.1080/08997659.2014.945049.PubMedGoogle Scholar
  71. 71.
    Oplinger RW, Wagner EJ. Control of Flavobacterium psychrophilum: tests of erythromycin, streptomycin, osmotic and thermal shocks, and rapid pH change. J Aquat Anim Health. 2013;25(1):1–8.  https://doi.org/10.1080/08997659.2012.720636.PubMedGoogle Scholar
  72. 72.
    • Boyacioĝlu M, Kum C, Kirkan Ş, Sekkin S, Parin U, Karademir Ü, et al. Comparison of in vitro and in vivo antibacterial efficacy for the control of Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) fry: the first genotypical evidence in West Aegean region of Turkey. Turk J Vet Anim Sci. 2015;39(3):314–21.  https://doi.org/10.3906/vet-1502-36. The paper demonstrates the difference between in vitro and in vivo results of testing the effectiveness of antimicrobial substances used to treat fish suffering from RTFS.Google Scholar
  73. 73.
    Wagner EJ, Oplinger RW. Toxicity of copper sulfate to Flavobacterium psychrophilum and rainbow trout eggs. J Aquat Anim Health. 2013;25(2):125–30.  https://doi.org/10.1080/08997659.2013.788580.PubMedGoogle Scholar
  74. 74.
    Long A, Call DR, Cain KD. Investigation of the link between broodstock infection, vertical transmission, and prevalence of Flavobacterium psychrophilum in eggs and progeny of rainbow trout and coho salmon. J Aquat Anim Health. 2014;26(2):66–77.  https://doi.org/10.1080/08997659.2014.886632.PubMedGoogle Scholar
  75. 75.
    Wald M, Schwarz K, Rehbein H, Bußmann B, Beermann C. Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chem. 2016;205:221–8.  https://doi.org/10.1016/j.foodchem.2016.03.002.PubMedGoogle Scholar
  76. 76.
    Ryerse IA, Hooft JM, Bureau DP, Anthony Hayes M, Lumsden JS. Diets containing corn naturally contaminated with deoxynivalenol reduces the susceptibility of rainbow trout (Oncorhynchus mykiss) to experimental Flavobacterium psychrophilum infection. Aquac Res. 2016;47(3):787–96.  https://doi.org/10.1111/are.12537.Google Scholar
  77. 77.
    LaPatra SE, Fehringer TR, Cain KD. A probiotic Enterobacter sp. provides significant protection against Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) after injection by two different routes. Aquaculture. 2014;433:361–6.  https://doi.org/10.1016/j.aquaculture.2014.06.022.Google Scholar
  78. 78.
    Sealey WM, Conley ZB, Bensley M. Prebiotic supplementation has only minimal effects on growth efficiency, intestinal health and disease resistance of Westslope cutthroat trout Oncorhynchus clarkii lewisi fed 30% soybean meal. Front Immunol. 2015;6.  https://doi.org/10.3389/fimmu.2015.00396.
  79. 79.
    Boutin S, Audet C, Derome N. Probiotic treatment by indigenous bacteria decreases mortality without disturbing the natural microbiota of Salvelinus fontinalis. Can J Microbiol. 2013;59(10):662–70.  https://doi.org/10.1139/cjm-2013-0443.PubMedGoogle Scholar
  80. 80.
    • Madsen L, Bertelsen SK, Dalsgaard I, Middelboe M. Dispersal and survival of Flavobacterium psychrophilum phages in vivo in rainbow trout and in vitro under laboratory conditions: implications for their use in phage therapy. Appl Environ Microbiol. 2013;79(16):4853–61.  https://doi.org/10.1128/AEM.00509-13. To evaluate the potential of phage therapy information on the survival of phages as provided in this paper is crucial.PubMedPubMedCentralGoogle Scholar
  81. 81.
    • Christiansen RH, Madsen L, Dalsgaard I, Castillo D, Kalatzis PG, Middelboe M. Effect of bacteriophages on the growth of Flavobacterium psychrophilum and development of phage-resistant strains. Microb Ecol. 2016;71(4):845–59.  https://doi.org/10.1007/s00248-016-0737-5. Knowledge on bacteriophage activity on bacteria and development of resistant bacteria isolates as demonstrated in this paper is essential for a potential use of this method in the combat of flavobacteriosis.PubMedGoogle Scholar
  82. 82.
    Castillo D, Christiansen RH, Dalsgaard I, Madsen L, Middelboe M. Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: linking genomic mutations to changes in bacterial virulence factors. Appl Environ Microbiol. 2015;81(3):1157–67.  https://doi.org/10.1128/AEM.03699-14.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Christiansen RH, Dalsgaard I, Middelboe M, Lauritsen AH, Madsen L. Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: implications for disease control in aquaculture. Appl Environ Microbiol. 2014;80(24):7683–93.  https://doi.org/10.1128/AEM.02386-14.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Bowker JD, Carty D, Trushenski JT, Bowman MP, Wandelear N, Matthews M. Controlling mortality caused by external columnaris in largemouth bass and bluegill with chloramine-T or hydrogen peroxide. N Am J Aquac. 2013;75(3):342–51.  https://doi.org/10.1080/15222055.2013.783521.Google Scholar
  85. 85.
    Farmer BD, Beck BH, Mitchell AJ, Rawles SD, Straus DL. Dietary copper effects survival of channel catfish challenged with Flavobacterium columnare. Aquac Res. 2017;48(4):1751–8.  https://doi.org/10.1111/are.13012.Google Scholar
  86. 86.
    Farmer BD, Beck BH, Mitchell AJ, Straus DL. Pretreating channel catfish with copper sulfate affects susceptibility to columnaris disease. N Am J Aquac. 2013;75(2):205–11.  https://doi.org/10.1080/15222055.2012.758210.Google Scholar
  87. 87.
    Farmer BD, Straus DL, Beck BH, Kelly AM. The effectiveness of flow-through or static copper sulfate treatments on the survival of golden shiners and fathead minnows infected with Flavobacterium columnare. N Am J Aquac. 2015;77(1):90–5.  https://doi.org/10.1080/15222055.2014.953280.Google Scholar
  88. 88.
    Beck B, Barnett L, Farmer B, Peatman E, Carter D. Kaolinitic clay protects against Flavobacterium columnare infection in channel catfish Ictalurus punctatus (Rafinesque). J Fish Dis. 2015;38(3):241–8.  https://doi.org/10.1111/jfd.12229.PubMedGoogle Scholar
  89. 89.
    Straus DL, Farmer BD, Beck BH, Bosworth BG, Torrans EL, Tucker CS. Water hardness influences Flavobacterium columnare pathogenesis in channel catfish. Aquaculture. 2015;435:252–6.  https://doi.org/10.1016/j.aquaculture.2014.10.003.Google Scholar
  90. 90.
    • Penttinen R, Kinnula H, Lipponen A, Bamford JK, Sundberg L-R. High nutrient concentration can induce virulence factor expression and cause higher virulence in an environmentally transmitted pathogen. Microb Ecol. 2016;72(4):955–64.  https://doi.org/10.1007/s00248-016-0781-1. The importance of environmental factors as stressors for fish is well known. However, in this study, the effects of environmental parameters, i.e., nutrients, on the pathogen are elucidated and shown to have a major influence on pathogenicity.PubMedGoogle Scholar
  91. 91.
    Yildirim-Aksoy M, Beck BH. Antimicrobial activity of chitosan and a chitosan oligomer against bacterial pathogens of warmwater fish. J Appl Microbiol. 2017;122(6):1570–8.  https://doi.org/10.1111/jam.13460.PubMedGoogle Scholar
  92. 92.
    Mohammed H, Arias C. Protective efficacy of Nigella sativa seeds and oil against columnaris disease in fishes. J Fish Dis. 2016;39(6):693–703.  https://doi.org/10.1111/jfd.12402.PubMedGoogle Scholar
  93. 93.
    Yang X, Guo JL, Ye JY, Zhang YX, Wang W. The effects of Ficus carica polysaccharide on immune response and expression of some immune-related genes in grass carp, Ctenopharyngodon idella. Fish Shellfish Immunol. 2015;42(1):132–7.  https://doi.org/10.1016/j.fsi.2014.10.037.PubMedGoogle Scholar
  94. 94.
    Schrader KK, Cantrell CL, Mamonov LK, Kustova TS. Bioassay-directed isolation and evaluation of harmine from the terrestrial plant Peganum harmala L. for antibacterial activity against Flavobacterium columnare. J Microbiol Res. 2013;3(6):255–60.Google Scholar
  95. 95.
    Tan C-X, Schrader KK, Khan IA, Rimando AM. Activities of wogonin analogs and other flavones against Flavobacterium columnare. Chem Biodivers. 2015;12(2):259–72.  https://doi.org/10.1002/cbdv.201400181.PubMedGoogle Scholar
  96. 96.
    Xu H-J, Jiang W-D, Feng L, Liu Y, Wu P, Jiang J, et al. Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2, apoptosis, MLCK, NF-κB and TOR signaling in grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. Fish Shellfish Immunol. 2016;58:177–92.  https://doi.org/10.1016/j.fsi.2016.09.029.PubMedGoogle Scholar
  97. 97.
    Zhao H, Li C, Beck BH, Zhang R, Thongda W, Davis DA, et al. Impact of feed additives on surface mucosal health and columnaris susceptibility in channel catfish fingerlings, Ictalurus punctatus. Fish Shellfish Immunol. 2015;46(2):624–37.  https://doi.org/10.1016/j.fsi.2015.07.005.PubMedGoogle Scholar
  98. 98.
    Seghouani H, Garcia-Rangel C-E, Füller J, Gauthier J, Derome N. Walleye autochthonous bacteria as promising probiotic candidates against Flavobacterium columnare. Front Microbiol. 2017;8:1349.  https://doi.org/10.3389/fmicb.2017.01349.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Laanto E, Bamford JK, Ravantti JJ, Sundberg L-R. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front Microbiol 2015;6.  https://doi.org/10.3389/fmicb.2015.00829.
  100. 100.
    Wagner EJ, Oplinger RW. Comparison of the susceptibility of four rainbow trout strains to cold-water disease. J Aquat Anim Health. 2014;26(3):160–7.  https://doi.org/10.1080/08997659.2014.922514.PubMedGoogle Scholar
  101. 101.
    Marancik DP, Leeds TD, Wiens GD. Histopathologic changes in disease-resistant-line and disease-susceptible-line juvenile rainbow trout experimentally infected with Flavobacterium psychrophilum. J Aquat Anim Health. 2014;26(3):181–9.  https://doi.org/10.1080/08997659.2014.920735.PubMedGoogle Scholar
  102. 102.
    Paneru B, Al-Tobasei R, Palti Y, Wiens GD, Salem M. Differential expression of long non-coding RNAs in three genetic lines of rainbow trout in response to infection with Flavobacterium psychrophilum. Sci Rep. 2016;6(1).  https://doi.org/10.1038/srep36032.
  103. 103.
    Fredriksen B, Furevik A, Olsen R, Gauthier D, Mendoza J, Norderhus E. Virulence of Chilean field isolates of Flavobacterium psychrophilum in Atlantic salmon (Salmo salar L.) parr. Bull Eur Ass Fish Pathol. 2016;36(2):67.Google Scholar
  104. 104.
    Fujiwara-Nagata E, Ikeda J, Sugahara K, Eguchi M. A novel genotyping technique for distinguishing between Flavobacterium psychrophilum isolates virulent and avirulent to ayu, Plecoglossus altivelis altivelis (Temminck & Schlegel). J Fish Dis. 2012;35(7):471–80.  https://doi.org/10.1111/j.1365-2761.2012.01368.x.PubMedGoogle Scholar
  105. 105.
    Van Vliet D, Loch TP, Faisal M. Flavobacterium psychrophilum infections in salmonid broodstock and hatchery-propagated stocks of the Great Lakes Basin. J Aquat Anim Health. 2015;27(4):192–202.  https://doi.org/10.1080/08997659.2015.1088488.PubMedGoogle Scholar
  106. 106.
    LaFrentz BR, Shoemaker CA, Booth NJ, Peterson BC, Ourth DD. Spleen index and mannose-binding lectin levels in four channel catfish families exhibiting different susceptibilities to Flavobacterium columnare and Edwardsiella ictaluri. J Aquat Anim Health. 2012;24(3):141–7.  https://doi.org/10.1080/08997659.2012.675936 PubMedGoogle Scholar
  107. 107.
    Fuller SA, Farmer BD, Beck BH. White bass Morone chrysops is less susceptible than its hybrid to experimental infection with Flavobacterium columnare. Dis Aquat Org. 2014;109(1):15–22.  https://doi.org/10.3354/dao02716.PubMedGoogle Scholar
  108. 108.
    Peatman E, Li C, Peterson BC, Straus DL, Farmer BD, Beck BH. Basal polarization of the mucosal compartment in Flavobacterium columnare susceptible and resistant channel catfish (Ictalurus punctatus). Mol Immunol. 2013;56(4):317–27.  https://doi.org/10.1016/j.molimm.2013.04.014.PubMedGoogle Scholar
  109. 109.
    Pérez-Sancho M, Vela AI, Wiklund T, Kostrzewa M, Domínguez L, Fernández-Garayzábal JF. Differentiation of Flavobacterium psychrophilum from Flavobacterium psychrophilum-like species by MALDI-TOF mass spectrometry. Res Vet Sci. 2017;115:345–52.  https://doi.org/10.1016/j.rvsc.2017.06.022.PubMedGoogle Scholar
  110. 110.
    Fernández-Álvarez C, Torres-Corral Y, Santos Y. Use of ribosomal proteins as biomarkers for identification of Flavobacterium psychrophilum by MALDI-TOF mass spectrometry. J Proteome. 2017.  https://doi.org/10.1016/j.jprot.2017.09.007.
  111. 111.
    Fujiwara-Nagata E, Eguchi M. A quantitative loop-mediated isothermal amplification assay for Flavobacterium psychrophilum in river-water samples containing DNA amplification inhibitors. Aquacult Sci. 2012;60(4):469–74.  https://doi.org/10.11233/aquaculturesci.60.469.Google Scholar
  112. 112.
    Oplinger RW, Wagner EJ. Effects of media ingredient substitution and comparison of growth of Flavobacterium psychrophilum among four media. J Aquat Anim Health. 2012;24(1):49–57.  https://doi.org/10.1080/08997659.2012.668510.PubMedGoogle Scholar
  113. 113.
    Gieseker CM, Mayer TD, Crosby TC, Carson J, Dalsgaard I, Darwish AM, et al. Quality control ranges for testing broth microdilution susceptibility of Flavobacterium columnare and F. psychrophilum to nine antimicrobials. Dis Aquat Org. 2012;101(3):207–15.  https://doi.org/10.3354/dao02527.PubMedGoogle Scholar
  114. 114.
    Miranda CD, Smith P, Rojas R, Contreras-Lynch S, Vega JA. Antimicrobial susceptibility of Flavobacterium psychrophilum from Chilean salmon farms and their epidemiological cut-off values using agar dilution and disk diffusion methods. Front Microbiol. 2016;7.  https://doi.org/10.3389/fmicb.2016.01880.
  115. 115.
    Patra A, Sarker S, Banerjee S, Adikesavalu H, Biswas D, Abraham T. Rapid detection of Flavobacterium columnare infection in fish by species-specific polymerase chain reaction. J Aquac Res Dev. 2016;7:445.  https://doi.org/10.4172/2155-9546.1000445.Google Scholar
  116. 116.
    Suebsing R, Kampeera J, Sirithammajak S, Withyachumnarnkul B, Turner W, Kiatpathomchai W. Colorimetric method of loop-mediated isothermal amplification with the pre-addition of calcein for detecting Flavobacterium columnare and its assessment in tilapia farms. J Aquat Anim Health. 2015;27(1):38–44.  https://doi.org/10.1080/08997659.2014.966212.PubMedGoogle Scholar
  117. 117.
    Gibbs GD. Detection of Flavobacterium columnare in tissues and pond water using real-time polymerase chain reaction. Mississippi: Mississippi State University; 2015.Google Scholar
  118. 118.
    Gao DX, Gaunt PS. Development of new G media for culture of Flavobacterium columnare and comparison with other media. Aquaculture. 2016;463:113–22.  https://doi.org/10.1016/j.aquaculture.2016.05.006.Google Scholar
  119. 119.
    Gieseker CM. Development of methods to test drug sensitivity of fish pathogenic Flavobacterium columnare and drug sensitivity thresholds for F. columnare to the antimicrobial florfenicol. College Park: University of Maryland; 2015.Google Scholar
  120. 120.
    Iturriaga M, Espinoza MB, Poblete-Morales M, Feijoo CG, Reyes AE, Molina A, et al. Cytotoxic activity of Flavobacterium psychrophilum in skeletal muscle cells of rainbow trout (Oncorhynchus mykiss). Vet Microbiol. 2017;210:101–6.  https://doi.org/10.1016/j.vetmic.2017.09.009.PubMedGoogle Scholar
  121. 121.
    Papadopoulou A, Dalsgaard I, Lindén A, Wiklund T. In vivo adherence of Flavobacterium psychrophilum to mucosal external surfaces of rainbow trout (Oncorhynchus mykiss) fry. J Fish Dis. 2017;40(10):1309–20.  https://doi.org/10.1111/jfd.12603.PubMedGoogle Scholar
  122. 122.
    Cipriano RC. Bacterial analysis of fertilized eggs of Atlantic salmon from the Penobscot, Naraguagus, and Machias Rivers, Maine. J Aquat Anim Health. 2015;27(3):172–7.  https://doi.org/10.1080/08997659.2015.1050127.PubMedGoogle Scholar
  123. 123.
    Sebastião FA, Pilarski F, Lemos MVF. Composition of extracellular polymeric substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil. Braz J Microbiol. 2013;44(3):861–4.  https://doi.org/10.1590/S1517-83822013005000058.Google Scholar
  124. 124.
    Lange M, Farmer B, Declercq A, Peatman E, Decostere A, Beck B. Sickeningly sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence. J Fish Dis. 2017;40(11):1613–24.  https://doi.org/10.1111/jfd.12629.PubMedGoogle Scholar
  125. 125.
    Guan L, Santander J, Mellata M, Zhang Y, Curtiss R 3rd. Identification of an iron acquisition machinery in Flavobacterium columnare. Dis Aquat Org. 2013;106(2):129–38.  https://doi.org/10.3354/dao02635.PubMedGoogle Scholar
  126. 126.
    Beck B, Li C, Farmer B, Barnett L, Lange M, Peatman E. A comparison of high- and low-virulence Flavobacterium columnare strains reveals differences in iron acquisition components and responses to iron restriction. J Fish Dis 2016;39(3):259–268.  https://doi.org/10.1111/jfd.12343.
  127. 127.
    Pereira MJ. Characterization of chondroitin AC lyase in Flavobacterium columnare. Master Thesis, University of Rhode Island. 2012. https://search.proquest.com/docview/1095368429.
  128. 128.
    Conrad RA. Determination of Flavobacterium columnare virulence factors in zebra fish. 2013 NCUR 2013.Google Scholar
  129. 129.
    Shoemaker CA, LaFrentz BR. Growth and survival of the fish pathogenic bacterium, Flavobacterium columnare, in tilapia mucus and porcine gastric mucin. FEMS Microbiol Lett. 2015;362(4):1–5.  https://doi.org/10.1093/femsle/fnu060.Google Scholar
  130. 130.
    Kinnula H. The influence of infective dose, nutrient availability and coinfection on virulence of Flavobacterium columnare: implications of intensive aquaculture on opportunistic infections. Jyväskylä studies in biological and environmental. Science. 2016;321.Google Scholar
  131. 131.
    Dong H, Senapin S, LaFrentz B, Rodkhum C. Virulence assay of rhizoid and non-rhizoid morphotypes of Flavobacterium columnare in red tilapia, Oreochromis sp., fry. J Fish Dis. 2016;39(6):649–55.  https://doi.org/10.1111/jfd.12385.PubMedGoogle Scholar
  132. 132.
    Laanto E, Penttinen RK, Bamford JK, Sundberg L-R. Comparing the different morphotypes of a fish pathogen-implications for key virulence factors in Flavobacterium columnare. BMC Microbiol. 2014;14(1):170.  https://doi.org/10.1186/1471-2180-14-170.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Kunttu HM, Sundberg LR, Pulkkinen K, Valtonen ET. Environment may be the source of Flavobacterium columnare outbreaks at fish farms. Environ Microbiol Rep. 2012;4(4):398–402.  https://doi.org/10.1111/j.1758-2229.2012.00342.x.PubMedGoogle Scholar
  134. 134.
    Evenhuis JP, LaPatra SE, Marancik D. Early life stage rainbow trout (Oncorhynchus mykiss) mortalities due to Flavobacterium columnare in Idaho, USA. Aquaculture. 2014;418:126–31.  https://doi.org/10.1016/j.aquaculture.2013.09.044.Google Scholar
  135. 135.
    LaFrentz B, LaPatra S, Shoemaker C, Klesius P. Reproducible challenge model to investigate the virulence of Flavobacterium columnare genomovars in rainbow trout Oncorhynchus mykiss. Dis Aquat Org. 2012;101(2):115–22.  https://doi.org/10.3354/dao02522.PubMedGoogle Scholar
  136. 136.
    Declercq AM, Chiers K, Haesebrouck F, Van den Broeck W, Dewulf J, Cornelissen M, et al. Gill infection model for columnaris disease in common carp and rainbow trout. J Aquat Anim Health. 2015;27(1):1–11.  https://doi.org/10.1080/08997659.2014.953265.PubMedGoogle Scholar
  137. 137.
    Zhang C, Li D-L, Chi C, Ling F, Wang G-X. Dactylogyrus intermedius parasitism enhances Flavobacterium columnare invasion and alters immune-related gene expression in Carassius auratus. Dis Aquat Org 2015;116(1):11–21.  https://doi.org/10.3354/dao02902.
  138. 138.
    D-H X, Shoemaker CA, LaFrentz BR. Enhanced susceptibility of hybrid tilapia to Flavobacterium columnare after parasitism by Ichthyophthirius multifiliis. Aquaculture. 2014;430:44–9.  https://doi.org/10.1016/j.aquaculture.2014.03.041.Google Scholar
  139. 139.
    Tohmee N, Deemagarn T. A035-AQ008 Flavobacterium columnare isolated from brains of pond culture Nile tilapia in Thailand. Abstracts 38th ICVS, Bankok, Thailand. https://www.researchgate.net/profile/Taweewat_Deemagarn/publication/266262540_A035-AQ008_Flavobacterium_columnare_isolated_from_brains_of_pond_culture_Nile_tilapia_in_Thailand/links/542baffd0cf29bbc126a9104.pdf.
  140. 140.
    Bullard S, Mohammed H, Arias C. First record of the fish pathogen Flavobacterium columnare genomovar II from bluegill, Lepomis macrochirus (Rafinesque), with observations on associated lesions. J Fish Dis. 2013;36(4):447–51.  https://doi.org/10.1111/jfd.12005.PubMedGoogle Scholar
  141. 141.
    Scott SJ, Bollinger TK. Flavobacterium columnare: an important contributing factor to fish die-offs in southern lakes of Saskatchewan, Canada. J Vet Diagn Investig. 2014;26(6):832–6.  https://doi.org/10.1177/1040638714553591.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Fish and Wildlife HealthUniversity of BernBernSwitzerland
  2. 2.National Veterinary InstituteTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations