Skip to main content

Advertisement

Log in

Bacterial Diseases in Honeybees

  • Bacteriology (N Borel, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

American foulbrood (AFB) and European foulbrood (EFB) are widely distributed and highly infectious bacterial diseases of honeybee brood causing colony losses and considerable economic strain on apiculture globally. In this review, we synthesize the most recent discoveries and achievements made towards understanding the pathogenesis and epidemiology of these two bacterial diseases and present current efforts in finding ways to combat them.

Recent Findings

Advancements in molecular methods, such as next-generation sequencing, have provided high-resolution insight into the epidemiological parameters and factors of virulence for the foulbroods of honeybees.

Summary

The recently gained detailed knowledge of the diversity, biogeography, and relatedness of strains and sub-types of the causative bacteria of AFB and EFB provides a background to study their epidemiology at many scales. Such information will help provide a more global perspective on honeybee disease epidemiology for an increasingly international beekeeping industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Matheson A. World bee health report. Bee World. 1993;74(4):176–212. https://doi.org/10.1080/0005772X.1993.11099183.

    Article  Google Scholar 

  2. Genersch E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol. 2010;103:S10–9. https://doi.org/10.1016/j.jip.2009.06.015.

    Article  PubMed  Google Scholar 

  3. Cantwell GE. The use of ethylene oxide to fumigate honey bee equipment in the United States and Canada during the 1970s. Am Bee J. 1980;120:840–3.

    Google Scholar 

  4. Alippi AM. Bacterial diseases of honey bees. In: Ritter W, editor. Bee health and veterinarians. World Organization for Animal Health. Paris; 2014. p. 117–24.

  5. Tarr HLA. Studies of American foul brood of bees. I: the relative pathogenicity of vegetative cells and endospores of Bacillus larvae for the brood of the bee. Ann Appl Biol. 1937;24(2):377–84. https://doi.org/10.1111/j.1744-7348.1937.tb05040.x.

    Article  Google Scholar 

  6. Bamrick JF. Resistance to American foulbrood in honey bees VI. Spore germination in larvae of different ages. J Invertebr Pathol. 1967;9:30–4.

    Article  Google Scholar 

  7. Hoage TR, Rothenbuhler WC. Larval honey bee response to various doses of Bacillus larvae spores. J Econ Entomol. 1966;59(1):42–5. https://doi.org/10.1093/jee/59.1.42.

    Article  Google Scholar 

  8. Genersch E, Ashiralieva A, Fries I. Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees. Appl Environ Microbiol. 2005;71(11):7551–5. https://doi.org/10.1128/AEM.71.11.7551-7555.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yue D, Nordhoff M, Wieler LH, Genersch E. Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ Microbiol. 2008;10(6):1612–20. https://doi.org/10.1111/j.1462-2920.2008.01579.x.

    Article  CAS  PubMed  Google Scholar 

  10. de Graaf DC, Alippi AM, Brown M, Evans JD, Feldlaufer M, Gregorc A, et al. Diagnosis of American foulbrood in honey bees: a synthesis and proposed analytical protocols. Lett Appl Microbiol. 2006;43(6):583–90. https://doi.org/10.1111/j.1472-765X.2006.02057.x.

    Article  PubMed  Google Scholar 

  11. Forsgren E, Laugen AT. Prognostic value of using bee and hive debris samples for the detection of American foulbrood disease in honey bee colonies. Apidologie. 2014;45(1):10–20. https://doi.org/10.1007/s13592-013-0225-6.

    Article  Google Scholar 

  12. Adjlane N, Haddad N, Kechih S. Comparative study between techniques for the diagnosis of American foulbrood (Paenibacillus larvae) in honeybee colony. J Anim Vet Adv. 2014;13:970–3.

    Google Scholar 

  13. Hansen H, Brodsgaard C. American foulbrood: a review of its biology, diagnosis and control. Bee World. 1999;80(1):5–23. https://doi.org/10.1080/0005772X.1999.11099415.

    Article  Google Scholar 

  14. Del Hoyo ML, Basualdo M, Lorenzo A, Palacio MA, Rodriguez EM, Bedascarrasbure E. Effect of shaking honey bee colonies affected by American foulbrood on Paenibacillus larvae larvae spore loads. J Apic Res. 2001;40(2):65–9. https://doi.org/10.1080/00218839.2001.11101053.

    Article  Google Scholar 

  15. Alonso-Salces RM, Cugnata NM, Guaspari E, Pellegrini MC, Aubone I, De Piano FG, et al. Natural strategies for the control of Paenibacillus larvae, the causative agent of American foulbrood in honey bees: a review. Apidologie. 2017;48(3):387–400. https://doi.org/10.1007/s13592-016-0483-1.

    Article  CAS  Google Scholar 

  16. Kuzyšinová K, Mudroňová D, Toporčák J, Molnár L, Javorský P, Javorsk P. The use of probiotics, essential oils and fatty acids in the control of American foulbrood and other bee diseases. J Apic Res. 2016;55(5):386–95. https://doi.org/10.1080/00218839.2016.1252067.

    Article  Google Scholar 

  17. Ghorbani-Nezami S, LeBlanc L, Yost DG, Amy PS, Jeanne R. Phage therapy is effective in protecting honeybee larvae from American foulbrood disease. J Insect Sci. 2015;15(1):84. https://doi.org/10.1093/jisesa/iev051.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yost DG, Tsourkas P, Amy PS. Experimental bacteriophage treatment of honeybees (Apis mellifera) infected with Paenibacillus larvae, the causative agent of American foulbrood disease. Bacteriophage. 2016;6(1):e1122698. https://doi.org/10.1080/21597081.2015.1122698.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brady TS, Merrill BD, Hilton JA, Payne AM, Stephenson MB, Hope S. Bacteriophages as an alternative to conventional antibiotic use for the prevention or treatment of Paenibacillus larvae in honeybee hives. J Invertebr Pathol. 2017;150:94–100. https://doi.org/10.1016/j.jip.2017.09.010.

    Article  PubMed  Google Scholar 

  20. Beims H, Wittmann J, Bunk B, Spröer C, Rohde C, Günther G, et al. Paenibacillus larvae-directed bacteriophage HB10c2 and its application in American foulbrood-affected honey bee larvae. Appl Environ Microbiol. 2015;81(16):5411–9. https://doi.org/10.1128/AEM.00804-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fries I, Camazine S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie. 2001;32(3):199–214. https://doi.org/10.1051/apido:2001122.

    Article  Google Scholar 

  22. Peters M, Kilwinski J, Beringhoff A, Reckling D, Genersch E. American foulbrood of the honey bee: occurrence and distribution of different genotypes of Paenibacillus larvae in the administrative district of Arnsberg (North Rhine-Westphalia). J Vet Med. 2006;53(2):100–4. https://doi.org/10.1111/j.1439-0450.2006.00920.x.

    Article  CAS  Google Scholar 

  23. Erban T, Ledvinka O, Kamler M, Nesvorna M, Hortova B, Tyl J, et al. Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis. Sci Rep. 2017;7(1):5084. https://doi.org/10.1038/s41598-017-05076-8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lindström A, Korpela S, Fries I. Horizontal transmission of Paenibacillus larvae spores between honey bee (Apis mellifera) colonies through robbing. Apidologie. 2008;39(5):515–22. https://doi.org/10.1051/apido:2008032.

    Article  Google Scholar 

  25. Pentikäinen J, Kalliainen E, Pelkonen S. Molecular epidemiology of Paenibacillus larvae infection in Finland. Apidologie. 2009;40(1):73–81. https://doi.org/10.1051/apido:2008061.

    Article  Google Scholar 

  26. • Ågren J, Schäfer MO, Forsgren E. Using whole genome sequencing to study American foulbrood epidemiology in honeybees. PLoS One. 2017;12:e0187924. The evaluation of MLST using WGS as a new development for AFB-epidemiology by tracing a disease outbreak to its source.

    Article  PubMed  PubMed Central  Google Scholar 

  27. • Morrissey BJ, Helgason T, Poppinga L, Fünfhaus A, Genersch E, Budge GE. Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ Microbiol. 2015;17:1414–24. The establishment of a MLST scheme to examine global patterns in population structure and the epidemiology of P. larvae showing differing distribution patterns between strains.

    Article  CAS  PubMed  Google Scholar 

  28. Krongdang S, Evans JD, Pettis JS, Chantawannakul P. Multilocus sequence typing, biochemical and antibiotic resistance characterizations reveal diversity of north American strains of the honey bee pathogen Paenibacillus larvae. PLoS One. 2017;12(5):e0176831. https://doi.org/10.1371/journal.pone.0176831.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Genersch E, Forsgren E, Pentikäinen J, Ashiralieva A, Rauch S, Kilwinski J, et al. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int J Syst Evol Microbiol. 2006;56(3):501–11. https://doi.org/10.1099/ijs.0.63928-0.

    Article  CAS  PubMed  Google Scholar 

  30. Schäfer MO, Genersch E, Fünfhaus A, Poppinga L, Formella N, Bettin B, et al. Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry. Vet Microbiol. 2014;170(3-4):291–7. https://doi.org/10.1016/j.vetmic.2014.02.006.

    Article  PubMed  Google Scholar 

  31. Descamps T, De Smet L, Stragier P, De Vos P, de Graaf DC. Multiple locus variable number of tandem repeat analysis: a molecular genotyping tool for Paenibacillus larvae. Microb Biotechnol. 2016;9(6):772–81. https://doi.org/10.1111/1751-7915.12375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rauch S, Ashiralieva A, Hedtke K, Genersch E. Negative correlation between individual and colony level virulence of Paenibacillus larvae, the etiological agent of American foulbrood of honeybees. Appl Environ Microbiol. 2009;75(10):3344–7. https://doi.org/10.1128/AEM.02839-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebeling J, Knispel H, Hertlein G, Funfhaus A, Genersch E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl Microbiol Biotechnol. 2016;100(17):7387–95. https://doi.org/10.1007/s00253-016-7716-0.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Gonzalez E, Müller S, Ensle P, Süssmuth RD, Genersch E. Elucidation of sevadicin, a novel non-ribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium Paenibacillus larvae. Environ Microbiol. 2014;16(5):1297–309. https://doi.org/10.1111/1462-2920.12417.

    Article  CAS  Google Scholar 

  35. Garcia-Gonzalez E, Müller S, Hertlein G, Heid N, Süssmuth RD, Genersch E. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiol Open. 2014;3(5):642–56. https://doi.org/10.1002/mbo3.195.

    Article  CAS  Google Scholar 

  36. Hertlein G, Müller S, Garcia-Gonzalez E, Poppinga L, Süssmuth RD, Genersch E. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS One. 2014;9(9):e108272. https://doi.org/10.1371/journal.pone.0108272.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Müller S, Garcia-Gonzalez E, Mainz A, Hertlein G, Heid NC, Mösker E, et al. Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae. Angew Chemie Int Ed Engl. 2014;53(40):10821–5. https://doi.org/10.1002/anie.201404572.

    Article  Google Scholar 

  38. Sood S, Steinmetz H, Beims H, Mohr KI, Stadler M, Djukic M, et al. Paenilarvins: Iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae. ChemBioChem. 2014;15:1947–55.

    Article  CAS  PubMed  Google Scholar 

  39. Garcia-Gonzalez E, Poppinga L, Fünfhaus A, Hertlein G, Hedtke K, Jakubowska A, et al. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American foulbrood of honey bees. PLoS Pathog. 2014;10(7):e1004284. https://doi.org/10.1371/journal.ppat.1004284.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fünfhaus A, Poppinga L, Genersch E. Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood. Environ Microbiol. 2013;15(11):2951–65. https://doi.org/10.1111/1462-2920.12229.

    PubMed  Google Scholar 

  41. Poppinga L, Janesch B, Fünfhaus A, Sekot G, Garcia-Gonzalez E, Hertlein G, et al. Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American foulbrood of honey bees. PLoS Pathog. 2012;8(5):e1002716. https://doi.org/10.1371/journal.ppat.1002716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Djukic M, Brzuszkiewicz E, Fünfhaus A, Voss J, Gollnow K, Poppinga L, et al. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS One. 2014;9:e90914. The whole genome sequence of P. larvae genotypes ERIC I and ERIC II is presented with a comparative genomic analysis of virulence factors and pathogenicity between the two strains.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chan QWT, Cornman RS, Birol I, Liao NY, Chan SK, Docking TR, et al. Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees. BMC Genomics. 2011;12(1):450. https://doi.org/10.1186/1471-2164-12-450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Descamps T, De Smet L, De Vos P, de Graaf DC. Unbiased random mutagenesis contributes to a better understanding of the virulent behaviour of Paenibacillus larvae. J Appl Microbiol. 2017;124(1):28–41. https://doi.org/10.1111/jam.13611.

    Article  PubMed  Google Scholar 

  45. Wilkins S, Brown M, Andrew A, Cuthbertson GS. The incidence of honey bee pests and diseases in England and Wales. Pest Manag Sci. 2007;63(11):1062–8. https://doi.org/10.1002/ps.1461.

    Article  CAS  PubMed  Google Scholar 

  46. Roetschi A, Berthoud H, Kuhn R, Imdorf A. Infection rate based on quantitative real-time PCR of Melissococcus plutonius, the causal agent of European foulbrood, in honeybee colonies before and after apiary sanitation. Apidologie. 2008;39(3):362–71. https://doi.org/10.1051/apido:200819.

    Article  CAS  Google Scholar 

  47. Dahle B. Åpen yngelröta. Birokteren. 2010;12:342–4.

    Google Scholar 

  48. Hendrikx P, Saussac M, Meziani F, Wendling S, Franco S, Chauzat M-P. Résabeilles : résultats de deux campagnes de surveillance programmée de la mortalité des abeilles en France. Bull épidémiologique, santé Anim Aliment. 2015:19–23.

  49. Erban T, Ledvinka O, Kamler M, Hortova B, Nesvorna M, Tyl J, et al. Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood. PeerJ. 2017;5:e3816. https://doi.org/10.7717/peerj.3816.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Forsgren E. European foulbrood in honey bees. J Invertebr Pathol. 2010;103:S5–9. https://doi.org/10.1016/j.jip.2009.06.016.

    Article  PubMed  Google Scholar 

  51. Bailey L, Collins MD. Reclassification of ‘Streptococcus pluton’ (white) in a new genus Melissococcus, as Melissococcus pluton nom. rev.; comb. nov. J Appl Bacteriol. 1982;53(2):215–7. https://doi.org/10.1111/j.1365-2672.1982.tb04679.x.

    Article  Google Scholar 

  52. Truper HG, dé Clari L. Taxonomic note: erratum and correction of further specific epithets formed as sustantives (nouns) in apposiotion. Int J Syst Bacteriol. 1998;48(2):615. https://doi.org/10.1099/00207713-48-2-615.

    Article  Google Scholar 

  53. Bailey L. An unusual type of Streptococcus pluton from the eastern hive bee. J Invertebr Pathol. 1974;23(2):246–7. https://doi.org/10.1016/0022-2011(74)90192-X.

    Article  CAS  PubMed  Google Scholar 

  54. Allen MF, Ball BV. An isolate of Melissococcus pluton from Apis laboriosa. J Invertebr Pathol. 1990;55(3):439–40. https://doi.org/10.1016/0022-2011(90)90090-S.

    Article  Google Scholar 

  55. Mohan Rao K, Katna S, Rana BS, Rana R. Thai sacbrood and sacbrood viruses versus European foulbrood of hive bees in India—a review. J Apic Res. 2015;54(3):192–9. https://doi.org/10.1080/00218839.2016.1145417.

    Article  Google Scholar 

  56. Tarr HLA. Studies of European foul brood of bees. IV. On the attempted cultivation of Bacillus pluton, the susceptibility of individual larvae to inoculation with this organism and its localization within its host. Ann Appl Biol. 1938;25(4):815–21. https://doi.org/10.1111/j.1744-7348.1938.tb02356.x.

    Article  Google Scholar 

  57. White G. The cause of European foulbrood. US Dep Agric Circular. 1912;157:1–15.

    Google Scholar 

  58. • Takamatsu D, Sato M, Yoshiyama M. Infection of Melissococcus plutonius clonal complex 12 strain in European honeybee larvae is essentially confined to the digestive tract. J Vet Med Sci. 2015;78:29–34. Confirms that EFB infection is essentially confined to the digestive tract.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bailey L, Ball B. Honey bee pathology. London: Academic Press; 1991.

    Google Scholar 

  60. Bailey L. Melissococcus pluton, the cause of European foulbrood of honey bees (Apis spp.). J Appl Bacteriol. 1983;55(1):65–9. https://doi.org/10.1111/j.1365-2672.1983.tb02648.x.

    Article  Google Scholar 

  61. Bailey L. The pathogenicity for honey-bee larvae of microorganisms associated with European foulbrood. J Insect Pathol. 1963;5:198–205.

    Google Scholar 

  62. Djordjevic SP, Noone K, Smith L, Hornitzky MAZ. Development of a hemi-nested PCR assay for the specific detection of Melissococcus pluton. J Apic Res. 1998;37(3):165–74. https://doi.org/10.1080/00218839.1998.11100968.

    Article  Google Scholar 

  63. • Erler S, Lewkowski O, Poehlein A, Forsgren E. The curious case of Achromobacter eurydice, a gram-variable pleomorphic bacterium associated with European foulbrood disease in honeybees. Microb Ecol. 2017; https://doi.org/10.1007/s00248-017-1007-x. A revised systematic classification of A. eurydice , a secondary bacteria in EFB.

  64. Gaggìa F, Baffoni L, Stenico V, Alberoni D, Buglione E, Lilli A, et al. Microbial investigation on honey bee larvae showing atypical symptoms of European foulbrood. Bull Insectology. 2015;68:321–7.

    Google Scholar 

  65. OIE (World Organization for Animal Health) (2017) Manual of diagnostic tests and vaccines for terrestrial animals 2017. Chapter 223 European foulbrood of honeybees (infection of honey bees with Melissococcus plutonius) http://wwwoieint/fileadmin/Home/eng/Health_standards/tahm/20203_EUROPEAN_FOULBROOD.pdf Accessed 7 December 2017.

  66. Allen MF, Ball BV. The cultural characteristics and serological relationships of isolates of Melissococcus pluton. J Apic Res. 1993;32(2):80–8. https://doi.org/10.1080/00218839.1993.11101291.

    Article  Google Scholar 

  67. Djordjevic SP, Forbes WA, Smith LA, Hornitzky MA. Genetic and biochemical diversity among isolates of Paenibacillus alvei cultured from Australian honeybee (Apis mellifera) colonies. Appl Environ Microbiol. 2000;66(3):1098–106. https://doi.org/10.1128/AEM.66.3.1098-1106.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. • Arai R, Tominaga K, Wu M, Okura M, Ito K, Okamura N, et al. Diversity of Melissococcus plutonius from honeybee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates. PLoS One. 2012;7:e33708. Description of two phenotypically and genotypically different subtypes, “typical” and “atypical”, of M. plutonius from Japan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. • Haynes E, Helgason T, Young JPW, Thwaites R, Budge GE. A typing scheme for the honeybee pathogen Melissococcus plutonius allows detection of disease transmission events and a study of the distribution of variants. Environ Microbiol Rep. 2013;5:525–9. Shows that isolates identical to the two Japanese subtypes, “typical” and “atypical”, are not unique to Japan but distributed globally.

    Article  CAS  PubMed  Google Scholar 

  70. •• Budge GE, Shirley MDF, Jones B, Quill E, Tomkies V, Feil EJ, et al. Molecular epidemiology and population structure of the honey bee brood pathogen Melissococcus plutonius. ISME J. 2014;8:1588–97. This study compares direct observations of virulence in the field suggesting that M. plutonius may differ in virulence at booth brood and colony level. The study also provides evidence that recombination occurs in M. plutonius.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Okumura K, Arai R, Okura M, Kirikae T, Takamatsu D, Osaki M, et al. Complete genome sequence of Melissococcus plutonius DAT561, a strain that shows an unusual growth profile and is representative of an endemic cluster in Japan. J Bacteriol. 2012;194(11):3014. https://doi.org/10.1128/JB.00437-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mill AC, Rushton SP, Shirley MDF, Smith GC, Mason P, Brown MA, et al. Clustering, persistence and control of a pollinator brood disease: epidemiology of American foulbrood. Environ Microbiol. 2014;16(12):3753–63. https://doi.org/10.1111/1462-2920.12292.

    Article  PubMed  Google Scholar 

  73. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402. https://doi.org/10.1186/1471-2164-12-402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Oliver Schäfer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Bacteriology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsgren, E., Locke, B., Sircoulomb, F. et al. Bacterial Diseases in Honeybees. Curr Clin Micro Rpt 5, 18–25 (2018). https://doi.org/10.1007/s40588-018-0083-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-018-0083-0

Keywords

Navigation